http://ciwank.net

disadur dari http://pemula.com

BAB 1

PENGANTAR UNIX

     1.1  MENGENAL UNIX  

          Dibanding dengan sistem operasi yang lain, mungkin UNIX 

     bukan  yang  terbaik.  Akan  tetapi  sebagian  besar  sistem 

     operasi  non-UNIX itu hanya untuk komputer  tertentu.  Suatu 

     aplikasi  yang dirancang pada sistem operasi tertentu  tidak 

     dapat dengan mudah dioperasikan pada komputer dengan  sistem 

     operasi yang berbeda.

          Ketergantungan  terhadap  komputer  tertentu  dirasakan 

     kurang  menguntungkan  oleh  pihak  pemakai.  Pada   umumnya 

     pemakai menginginkan suatu sistem yang dapat  mengoperasikan 

     perangkat  lunak  yang  standar pada  perangkat  keras  dari 

     berbagai vendor yang saling bersaing.

          UNIX  saat  ini tengah  memasuki  proses  penyempurnaan 

     untuk memenuhi kebutuhan standar itu. Dari pihak vendor baik 

     di  Amerika, Eropa maupun Asia menyadari bahwa UNIX  memberi 

     standar   dunia   yang  memungkinkan   pemakai   menghindari 

     ketergantungan  terhadap vendor tertentu.  Dan  standarisasi 

     sistem  operasi berbasis UNIX yang ada saat  ini  berkembang 

     untuk  mendukung  terbentuknya lingkungan  komputasi  sistem 

     terbuka (open system computing).

     1.2 STRUKTUR DAN KEMAMPUAN UNIX

          UNIX  adalah  sistem operasi  komputer.  Yang  dimaksud 

     dengan  sistem operasi komputer adalah program yang  berguna 

     untuk  mengendalikan  sistem komputer. Sistem  operasi  akan 

     mengalokasikan sumber daya komputer dan penjadualan  proses. 

     Sumber daya dapat berupa :

          - waktu  CPU

          - memory

          - disk

          - tape

          - printer

          - terminal

          - modem  

          - piranti lain yang dihubungkan dengan komputer. 

          Sistem operasi juga merupakan penghubung antara pemakai 

     dengan perangkat keras dan memberikan cara bagaimana pemakai 

     melakukan akses pada sumber daya komputer tersebut. Hubungan 

     antara   pemakai,   sistem  operasi  dan   perangkat   keras 

     digambarkan pada gambar 1.1 sebagai berikut:

                           +-----------------------+

                           |       pemakai         |

                           +-----------------------+

                           |    sistem operasi     |

                           +-----------------------+

                           |    perangkat keras    |

                           +-----------------------+

                           Gambar 1.1 Sistem Operasi

           Pada  mulanya  UNIX dikembangkan  di  komputer  besar, 

     namun kini banyak pula terdapat pada komputer sedang  bahkan 

     komputer mikro.

          Struktur  sistem  UNIX terdiri  dari  beberapa  bagian. 

     Untuk  memudahkan  dalam  menerangkan  struktur  UNIX,  maka 

     sistem   UNIX  akan  diuraikan  menjadi  beberapa   lapisan. 

     Lapisan-lapisan tersebut digambarkan sebagai berikut:

                    +---------------------------+

                    |         s h e l l <----------- Bourne Shell

                    |    ...................    |    C shell

          awk  --------------> Utilitas    .    |    Korn Shell

          grep      |    . +-------------+ .    |

          make      |    . |    Kernel   | .    |

          cp        |    . | +---------+ | .    |

          ...       |    . | |   h/w <-------------- Komputer

                    |    . | | sistem  | | .    |    Printer

                    |    . | +---------+ | .    |    Disk

                    |    . +-------------+ .    |    Tape

                    |    ...................    |    ...

                    |                           |

                    +---------------------------+

                        Gambar 1.2 Sistem UNIX

          a. Lapisan  yang  paling  dalam  adalah  komputer   dan 

             piranti  pendukungnya, seperti disk,  tape,  printer 

             dan  lain-lain.  Ini semua disebut  perangkat  keras 

             sistem.

          b. Di   seputar  perangkat  keras   tersebut   terdapat 

             sejumlah   program  yang  menangani  secara   detail 

             seperti  sumber daya komputer, mengorganisir  sistem 

             file,  mengurus  disk dan tape.  Pengoperasian  yang 

             dilakukannya  sangat  detil  sehingga  tidak   perlu 

             diketahui  oleh  pemakai. Lapisan  ini  kita   sebut 

             kernel. Kernel merupakan otak dari otak dari  sistem 

             operasi.

          c. Kernel  menyediakan  lapis  dukungan,  yaitu  berupa 

             program utilitas. Utilitas berfungsi untuk melakukan 

             akses  sistem bagi pemakai.  Utilitas-utilitas  yang 

             agak  sederhana dapat dikombinasikan dengan  memakai 

             fasilitas pemipaan.

          d. Lapis  terluar dari sistem UNIX adalah shell.  Shell 

             merupakan penghubung antara pemakai dan sistem. Bila 

             pemakai    mengetikkan   sebuah   perintah,    shell 

             menerjemahkan   perintah  tersebut  dan   mengatakan 

             kepada kernel apa yang harus dilakukan.  

             Sesungguhnya  shell merupakan bagian dari  utilitas. 

             Namun karena kerumitannya dan fungsinya yang sedikit 

             unik,  maka shell cenderung dianggap  sebagai  lapis 

             terpisah.

          Kemampuan-kemampuan yang dimiliki oleh UNIX antara lain 

     sebagai berikut:

          o Multiuser

            Sistem  dapat  digunakan oleh lebih dari  satu  orang 

            pada  satu  saat. Tentunya untuk  melakukan  hal  ini 

            harus   digunakan  lebih  dari  satu  terminal   yang 

            dihubungkan.  Selanjutnya, kita dapat  memakai  file, 

            program bahkan piranti-piranti yang terhubung  dengan 

            komputer secara bersama. 

          o Multitasking

            Sistem  dapat  melakukan beberapa tugas  atau  proses 

            pada  waktu yang bersamaan. Dengan demikian  sesorang 

            dapat memiliki satu proses yang sedang  berkomunikasi 

            langsung dengan terminal, tetapi juga memiliki proses 

            lain dengan prioritas yang lebih rendah.

          o Sistem File

            Organisasi  file  di  UNIX  memiliki  struktur  pohon 

            (tree) yang terdiri dari file dan direktori. Struktur 

            tersebut  diawali oleh akar (root) sebagai awal  dari 

            seluruh  direktori  yang  ada.   Karakteristik   dari 

            sistem file UNIX antara lain:

               - konsisten dalam memproses data dan peralatan

               - pertumbuhan file dan direktori secara dinamis

               - dilengkapi dengan proteksi    

          o Shell

            Shell  merupakan  antar muka  pemakai  dengan  sistem 

            UNIX.   Shell   memiliki   kemampuan   menterjemahkan 

            perintah-perintah  untuk  dilaksanakan  oleh   kernel 

            UNIX. Disamping itu, shell memiliki kemampuan sebagai 

            bahasa pemrograman.

          o Utilitas-utilitas

            UNIX  memiliki  lebih dari 200  utilitas  yang  dapat 

            digunakan  untuk  mengelola   sistem.  UNIX  memiliki 

            sejumlah  utilitas  yang agak  sederhana  yang  dapat 

            dikombinasikan dengan memakai pipa dan filter.

          o Surat Elektronik

            UNIX  dilengkapi  dengan fasilitas  untuk  pengiriman 

            surat antar pemakai di lingkungan sistem UNIX. 

          o Konsep Perangkat Keras

            Perangkat keras yang terhubung pada sistem UNIX  akan 

            dianggap  sebagai file biasa. UNIX  tidak  membedakan 

            antara perangkat keras dan file biasa. UNIX  mengenal 

            keyboard sebagai masukan standard dan  layar terminal 

            sebagai keluaran standard. 

          o Komunikasi antar Proses

            keluaran  dari suatu proses dapat  diproses  langsung 

            oleh proses lainnya (lihat bab 4).

          o Jaringan

            Pemakai  UNIX dapat berhubungan dengan  pemakai  lain 

            dalam   satu  komputer  (hubungan  antar   terminal). 

            Disamping  itu pemakai UNIX juga dapat  berkomunikasi 

            dengan pemakai lain pada komputer lainnya dalam  satu 

            jaringan  lokal atau LAN. Bahkan pemakai  UNIX  dapat 

            berhubungan  dengan pemakai lain pada  jaringan  lain 

            dalam lingkup jaringan luas atau WAN. Data ditransfer 

            dari PC ke UNIX, UNIX ke UNIX dan UNIX ke mesin  atau 

            komputer  lain  melalui:

            - kabel komunikasi langsung RS232 (serial comm)

            - ethernet 

            - dial up modem, leased line, public  switched  data   

              network.

          o Keamanan

            UNIX  menyediakan  fasilitas keamanan  untuk  pemakai 

            biasa,  pengembang sistem, dan  administrator  sistem 

            serta  jaringan  sistem. Proteksi  dilakukan  melalui 

            password  (login),  perijinan  file  dan   direktori, 

            enkripsi data, usia password otomatis, shell terbatas 

            dan identifikasi jaringan.

     1.3  SEJARAH UNIX

          Sistem operasi UNIX mulai dibuat pada tahun 1969.  Pada 

     waktu  itu Ken Tompson dan kawan-kawan sekerjanya  khususnya 

     Dennis  Ritchie  dan Joseph Ossanna dari Laboratorium  Bell, 

     yang  merupakan  bagian dari AT&T  (American  Telephone  and 

     Telegraph),  sedang  mengerjakan  proyek  MULTICS.   MULTICS 

     adalah singkatan dari MULTIplexed Information and  Computing 

     Systems,  namun beberapa orang ada yang mengartikan  sebagai 

     Many  Unnecessarily  Large Tables  In  Core  Simultaneously. 

     Setelah  MULTICS  selesai, muncul beberapa  kejanggalan  dan 

     dinilai kurang ramah dengan lingkungan komputer yang ada.

          Kemudian mereka memutuskan untuk membuat sistem operasi 

     baru.  Namun Ken tidak ingin menulis keseluruhan dari  awal, 

     mereka melanjutkan dan memodifikasi beberapa kemampuan  yang 

     ada pada MULTICS.

          Nama  UNIX  itu sendiri berasal dari kata  UNICS  yaitu 

     Uniplexed Information and Computing Systems, yang dicetuskan 

     oleh  Brian Kernighan pada tahun 1970. Saat itu  UNIX  masih 

     ditulis dalam bahasa assembly untuk komputer DEC PDP 7.

          Pada    tahun   yang   sama,   UNIX    berhasil    pula 

     diimplementasikan  pada  komputer DEC PDP-11/20.  Waktu  itu 

     yang   pertama   kali   menggunakan   UNIX   adalah   kantor 

     Laboratorium  Bell,  yaitu  untuk  sistem  pengolahan  teks. 

     Kantor  ini  tercatat sebagai pemakai UNIX yang  pertama  di 

     dunia.

          UNIX terus berkembang dan beberapa fasilitas  pendukung  

     pemakai  mulai dilengkapi, seperti fasilitas pengeditan  dan 

     pemformatan.  Akhirnya pada tahun 1971 lahirlah  UNIX  versi 

     pertama.

          Pada musim panas 1973 UNIX ditulis kembali dalam bahasa 

     C. Pada saat itu kernel UNIX, yaitu inti sistem operasi yang 

     mengatur  keseluruhan proses termasuk masukan dan  keluaran, 

     terdiri  atas 10.000 baris program C dan sekitar 1000  baris 

     program  assembly.  Dengan  menggunakan  bahasa  C,   sistem 

     operasi ini menjadi lebih mudah dimengerti dan dikembangkan. 

     UNIX yang dikeluarkan pada tahun 1973 disebut UNIX versi 4.

          Jumlah  pemakai  UNIX di  Laboratorium  Bell  bertambah 

     banyak  dan dukungan pengembangan semakin dibutuhkan.  Untuk 

     itu  dibentuk  dua kelompok peneliti  lain  di  Laboratorium 

     Bell. Pada perkembangan selanjutnya ternyata kedua  kelompok 

     ini saling bersaing. 

          Kelompok pertama dikenal dengan nama PWB  (Programmer's 

     Workbench). Kelompok ini dipimpin oleh Rudd Canaday.  Mereka 

     pada dasarnya disamping memberi dukungan juga  mengembangkan 

     UNIX khususnya untuk perangkat lunak-perangkat lunak  besar. 

     Hasil kerjanya yang pertama diberi nama PWB/UNIX 1.0

          Kelompok  kedua  diberi nama USG (UNIX  Suport  Group). 

     Mula-mula  kelompok  ini hanya  menyediakan  dukungan  saja, 

     namun  selanjutnya  kelompok ini  mencoba  membuat  beberapa 

     versi  UNIX untuk kebutuhan sendiri.  Mereka  memperkenalkan 

     versi  terbarunya yang diberi nama MERT (Multi  Environtment 

     Real-Time). MERT ini sama dengan konsep mesin virtual.

          Pada  tahun  1974 UNIX versi 5 dikeluarkan.  Versi  ini 

     secara  resmi  dibuat untuk tujuan  pendidikan.  UNIX  versi 

     inilah   yang  diajarkan  di  berbagai  universitas.   Konon 

     harganya sangat murah sekali.

          UNIX   semakin   populer  setelah   Laboratorium   Bell 

     mengeluarkan  UNIX  versi 6 pada bulan Mei 1975.  Versi  ini 

     merupakan  versi pertama yang dapat diperoleh kalangan  luar 

     Laboratorium   Bell   dengan  membayar  royalti.   Hal   ini 

     menyebabkan  banyak institusi lain yang  ikut  mengembangkan 

     UNIX,  antara  lain  Rand, BBN (Bolt  Beranek  and  Newman), 

     Universitas   Illinois,  Harvard,  Purdue  dan   Universitas 

     California  di Berkeley. Pengembangan yang paling  potensial 

     adalah yang dilakukan oleh Universitas California  Barkeley. 

     Versi yang dikeluarkan diberi nama UNIX versi BSD  (Berkeley 

     Software Distributions).

          UNIX  versi  7  dikeluarkan  pada  tahun  1979   dengan 

     dilengkapi  kompiler  C dan sebuah shell  yang  diberi  nama 

     Bourne  shell.  Sifat portabilitas mulai didapat  pada  UNIX 

     versi ini. Versi ini merupakan basis bagi semua pengembangan 

     sistem UNIX yang bersifat komersial.

          Pada  awal tahun 80-an, SCO (The Santa Cruz  Operation) 

     bekerja sama dengan Microsoft mengimplementasikan UNIX  pada 

     Intel  8086 dan beberapa mikroprosesor lainnya.  Versi  UNIX 

     ini  dikenal  dengan nama SCO XENIX. Saat  ini  XENIX  sudah 

     sangat populer di kalangan pemakai UNIX di komputer mikro.

          Persaingan  antara kelompok USG dan PWB  berakhir  pada 

     tahun  1982.  Mereka  bergabung menjadi  USDL  (Unix  System 

     Development Laboratory) dan memperkenalkan UNIX system III. 

          UNIX  system  V baru muncul pada tahun 1983  oleh  AT&T 

     Information System. Versi inilah yang paling banyak  beredar 

     sampai saat ini disamping UNIX versi BSD. UNIX system V  ini 

     mencakup beberapa kemampuan dari BSD, seperti editor vi  dan 

     C shell. 

          Dengan demikian kronologis pengembangan UNIX yang telah 

     diuraikan di atas dapat dirinci sebagai berikut:

          1969      UNIX lahir pada PDP-7

          1971      UNIX Versi 1, pada DEC PDP-11/20

          1973      UNIX Versi 4, dalam bahasa C

                                  dibentuk kelompok PWB dan USG

          1974      UNIX Versi 5, untuk pendidikan

          1975      UNIX Versi 6, disebar ke litbang  Universitas 

                                  timbul versi BSD

          1979      UNIX Versi 7, portable dan dilengkapi  dengan  

                                  kompiler C dan Bourne Shell

          1982      UNIX System III, Gabungan PWB dan USG                                  

          1983      UNIX System V, ditambahkan versi BSD 

                                   seperti vi dan C shell

     1.4 TENTANG BUKU INI

     1.4.1 Tata Cara Penulisan Huruf 

          Dalam  buku ini, kami menyajikan beberapa jenis  huruf. 

     Secara  umum tata cara penulisan huruf yang digunakan  dalam 

     buku ini adalah sebagai berikut:

          a. Teks  biasa  

             Disamping digunakan untuk bacaan biasa, jenis  huruf 

             ini  digunakan  untuk memperlihatkan  keluaran  atau 

             response dari sistem.

          b. Huruf miring

             Digunakan  untuk nama file atau istilah asing.  Jika 

             huruf  miring  tersebut di letakkan di  dalam  tanda 

             kurung   maka   diartikan  sebagai   komentar   atau 

             penjelasan dari operasi yang tengah dilakukan (tidak 

             terlihat pada layar terminal sistem).

          c. Huruf tebal

             Digunakan untuk menandakan masukan yang   diketikkan 

             oleh pemakai yang akan dikirim ke dalam sistem.

          d. Karakter ^

             Digunakan   untuk perintah penekanan tombol  kontrol 

             pada   keyboard  yang  diikuti  oleh   huruf   lain. 



 Misalnya:

                    ^H   penekanan  kontrol H

                    ^D   penekanan kontrol D

                    ^C   penekanan kontrol C

             Awas,  ^H tidak sama dengan penekanan tombol  ^  dan 

             tombol H !

          e. Karakter $

             Digunakan   sebagai  tanda  prompt  atau  menyatakan 

             bahwa  shell telah siap menerima perintah yang  akan 

             dikirim ke dalam sistem.

          f. Huruf tebal bergaris bawah

             Digunakan  untuk menandakan bahwa  karakter-karakter 

             tersebut  merupakan  masukan  yang  diketikkan  oleh 

             pemakai namun hasil ketikannya tidak ditampilkan  ke 

             layar terminal.

          Untuk  lebih  jelasnya, maka  perhatikan  contoh-contoh 

     berikut ini:

          Login: denny             

          Password : yerianto      (yerianto tak terlihat mata!)

          $ ls

          bin

          data

          program

          rahasia

          tmp

          $

          Kata Login dan Password merupakan keluaran sistem. Kata 

     denny   merupakan  masukan  dari  pemakai.   Kata   yerianto 

     merupakan  masukan yang diketikkan oleh pemakai namun  hasil 

     ketikkannya  tidak ditampilkan pada layar terminal.  Kalimat 

     (yerianto tak terlihat mata!) merupakan penjelasan  terhadap 

     operasi yang tengah dilakukan.  Karakter $ merupakan  prompt 

     UNIX, yaitu UNIX yang menggunakan Bourne shell, yang berarti 

     bahwa UNIX siap menerima perintah yang akan dikirm ke  dalam 

     sistem. Kemudian kata ls merupakan perintah yang  diketikkan 

     melalui  terminal oleh pemakai yang selanjutnya  oleh  shell 

     akan  dikirim ke dalam sistem. Hasil operasi  perintah  yang 

     dimasukkan  ditampilkan  ke layar sebagai  keluaran  sistem, 

     seperti terlihat yaitu bin, data, program, rahasia dan  tmp. 

     Selanjutnya shell siap menerima perintah berikutnya, hal ini 

     ditandai dengan karakter $.

     1.4.2 Apa saja yang akan dipelajari

          Akan memberikan tuntunan praktis untuk bekerja  di 

     dalam UNIX. Tuntunan diberikan melalui uraian-uraian singkat 

     dengan dilengkapi contoh-contoh yang bervariasi dan disertai 

     beberapa contoh kasus.

          Secara  Umum  materi yang tercakup di  dalam     ini 

     adalah sebagai berikut:

          Bab 1      : Sekilas tentang kemampuan dan perkembangan 

                       sistem operasi UNIX.

          Bab 2      : Pengertian rekening pemakai, password  dan 

                       prosedur penggunaan UNIX.

          Bab 3      : Konsep  file dan direktori  serta  operasi 

                       yang berhubungan dengan keduanya.

          Bab 4      : Konsep  proses dan hubungan antar  proses, 

                       seperti  pemipaan, filter  dan  pengalihan 

                       arah masukan dan keluaran.

          Bab 5      : Utilitas-utilitas UNIX seperti grep,  sort  

                       cut, cmp, diff, find dan lain-lain.

          Bab 6      : Penggunaan  editor teks UNIX, seperti  vi, 

                       ex dan sed.

          Bab 7      : Pengertian   tentang  shell   dan   teknik 

                       pemrogramannya.

          Bab 8      : Fasilitas untuk melakukan komunikasi antar 

                       pemakai di dalam sistem.

          Materi ini menyajikan materi tentang UNIX system V. Namun demikian, tidak menutup kemungkinan dapat digunakan pada UNIX versi BSD karena dasar-dasar UNIX-nya tidak jauh berbeda. 

BAB 2

MULAI BEKERJA DENGAN UNIX

        Bab  ini  akan menjelaskan  tentang  bagaimana  bekerja 

     dengan menggunakan UNIX. Disamping itu juga akan  dijelaskan 

     mengenai  beberapa konsep dasar UNIX yang  perlu  diketahui. 

     Pembahasan akan mencakup:

          - konsep rekening pemakai

          - memulai, menggunakan dan mengakhiri UNIX

          - password dan masalah keamanannya

          - format umum perintah UNIX

          - karakter dan tombol khusus

          - pertolongan tentang perintah

     2.1 PEMAKAI DALAM SISTEM UNIX

          Setiap pemakai yang akan menggunakan sistem UNIX  harus 

     memiliki  sebuah rekening pemakai di dalam sistem.  Rekening 

     ini  akan  digunakan untuk  mengidentifikasikan  pemakai  di 

     dalam   sistem.  Pemakai  yang  dikenal  oleh  sistem   akan 

     diperbolehkan  masuk  dan  melakukan  operasi-operasi   yang 

     diijinkan,  sedangkan  yang tidak dikenal oleh  sistem  akan 

     ditolak masuk.

          Rekening  pemakai  yang digunakan UNIX terdiri  dari  7 

     field  dimana  pembatas  antar  field  tersebut  yaitu  ':'. 

     Ketujuh field tersebut adalah :

          a. Nama pemakai atau user name

             Semua pemakai UNIX akan diberikan nama pemakai  atau 

             user  name  dimana nama pemakai ini  akan  digunakan 

             untuk  mengidentifikasi pemakai yang akan  masuk  ke 

             dalam  sistem. Di dalam sistem, nama  pemakai  antar 

             pemakai  sebaiknya  unik atau tidak boleh  ada  yang 

             sama. Jika tidak maka akan menimbulkan beberapa hal-

             hal  yang tidak diinginkan kemudian, misalnya  surat 

             elektronik yang akan salah alamat. 

          b. Password

             Ketika  kita akan masuk ke dalam sistem,  UNIX  akan 

             selalu  menanyakan  password  kita.  Password  dapat 

             dimisalkan  sebagai kunci untuk memasuki  lingkungan 

             kerja  pemakai.  Tanpa kunci  tersebut,  kita  tidak 

             dapat  masuk  ke dalam sistem dan  lingkungan  kerja 

             milik kita sendiri. 

          c. Nomor id pemakai

             Disamping   nama  pemakai,  seorang   pemakai   juga 

             memiliki  nomor  id  pemakai.  Berbeda  dengan  nama 

             pemakai,  nomor id pemakai haruslah unik. Nomor  ini 

             digunakan  oleh  sistem  untuk   mengidentifikasikan 

             pemakai pada beberapa operasi di dalam sistem.

          d. Nomor id group

             Beberapa  pemakai dapat disatukan dalam satu  group. 

             Group  tersebut  memiliki nama group  dan  nomor  id 

             group  dimana  informasi lengkap tentang  group  itu 

             sendiri   tersimpan  pada  file   /etc/group.   Pada 

             rekening  pemakai cukup dicantumkan nomor  id  group 

             saja. 

          e. Informasi rekening pemakai

             Informasi    rekening   pemakai   digunakan    untuk 

             menjelaskan tentang pemilik rekening tersebut.

          f. Home direktory

             Home  directory adalah direktori yang  pertama  kali 

             kita  kunjungi  dan tinggali ketika masuk  ke  dalam 

             sistem.   Pada  umumnya  direktori   ini   merupakan 

             direktori standar dimana kita dapat bekerja. 

          g. Program yang pertama kali dieksekusi 

             Ketika   pemakai  masuk  ke  dalam  sistem,   secara 

             otomatis  UNIX akan langsung  mengeksekusi  perintah 

             yang tercantum pada kolom ini. Pada umumnya perintah 

             yang   pertama   kali   dieksekusi   adalah   shell. 

             Selanjutnya   shell  akan  menerjemahkan   perintah-

             perintah lainnya yang kita masukkan ke dalam sistem.

          Perhatikan  contoh rekening pemakai milik tati  dibawah 

     ini:

       tati:Zzwd8ofgcPVIw:189:S1_87:staf:/usr/tati:/bin/sh

        |         |       |     |    |       |      |  

        |         |       |     |    |       |      |  

        +---------|-------|-----|----|-------|------|-> nama user

                  +-------|-----|----|-------|------|-> password

                          +-----|----|-------|------|-> no id user

                                +----|-------|------|-> no id grup

                                     +-------|------|-> info user

                                             +------|-> home dir.

                                                    +-> first prog

                       Gambar 2.1 rekening pemakai(user account)

          Perhatikan   bahwa   pada   kolom   password   terdapat 

     kata  Zzwd8ofgcPVIw dimana kata tersebut merupakan  password 

     dari   pemakai.   Namun  apakah   itu   merupakan   password 

     sesungguhnya   ?   Bukan  !  Password   sesungguhnya   telah 

     dikonversi  atau  di-encrypt. Jadi yang terlihat  pada  file 

     rekening tersebut merupakan konversi dari password  aslinya. 

     Password asli tidak dapat diketahui oleh siapapun.

          Pada rekening pemakai tati juga terlihat bahwa  program 

     yang  pertama kali dieksekusi ketika pemakai masuk ke  dalam 

     sistem UNIX adalah program /bin/sh yaitu program shell.

          Seluruh  rekening  milik pemakai di dalam  sistem  UNIX 

     disimpan di dalam sebuah file yang diberi nama  /etc/passwd. 

     Contoh  isi  sebuah  file rekening  pemakai  adalah  sebagai 

     berikut:

         $ cat /etc/passwd

         root:hxI/hs24w48Qg:0:0:Super user:/:/bin/csh

         sysadm::0:0:System Administration:/usr/sysadm:/bin/sh

         shut::0:0:Shutdown Otomatis:/usr/shut:/bin/sh

         cron:NOLOGIN:1:1:Cron daemon for periodic tasks:/:

         bin::3:3:System file administration:/:

         uucp::4:4:Uucp:/usr/spool/uucppublic:/usr/lib/uucp/uucico

         asg:NOLOGIN:6:6:Assignable device administration:/:

         sysinfo:NOLOGIN:10:10:Access to system information:/:

         network:NOLOGIN:12:12:Mail and Network:/usr/spool/micnet:

         lp:NOLOGIN:14:3:Printspooleradministration:/usr/spool/lp:

         dos:NOLOGIN:16:10:Access to Dos devices:/:

         chaerind:9zws8okDcPVIw:190:1087:geo:/tmp:/bin/sh

denny:Zzw.8ofgcPVIw:3710:1087:dennyyerianto:/usr/mhs/denny:/bin/sh

       ucrit:dsfinUcnsf2ck:3711:1087:ucrit:/usr/mhs/ucrit:/bin/csh

         jecky:Kawhju.ZQ4GOk:3713:51::/usr/jecky:/bin/ksh

         heru::3714:51::/usr/heru:/bin/sh

         $

          Pada sistem UNIX dikenal dua jenis pemakai yaitu:

          a. Pemakai biasa

             Pemakai biasa adalah pemakai yang diberi ijin  untuk 

             menggunakan sistem dan beberapa fasilitas lain dalam 

             UNIX  dengan batas-batas perijinan tertentu.  Dengan 

             demikian  pemakai  biasa tidak  dapat  secara  bebas 

             keluar masuk direktori lain atau tidak dapat  secara 

             bebas menggunakan file-file di dalam sistem.  Ingat, 

             pemakai biasa hanya boleh menggunakan direktori atau 

             file yang telah dijinkan saja.

          b. Super user

             Super   user  adalah  pemakai  yang   memiliki   hak 

             istimewa  di  dalam  sistem  UNIX  karena   memiliki 

             kemampuan  yang tidak dibatasi oleh  perijinan  yang 

             diterapkan  pada  sistem. Super  user  dapat  keluar 

             masuk direktori atau menggunakan file secara  bebas. 

             Pada umumnya super user dimiliki oleh  administrator 

             sistem.  Administrator  sistem adalah  pemakai  yang 

             bertanggung  jawab  untuk  mengelola  sistem.   Nama 

             pemakai   dari  rekening  super  user  ,  di   dalam 

             /etc/passwd  biasanya bernama root dengan  nomor  id 

             pemakai 0.

     2.2 MEMULAI, MENGGUNAKAN DAN MENGAKHIRI UNIX

          Jika  kita baru pertama kali menggunakan UNIX,  langkah 

     pertama  yang  dilakukan  adalah  meminta  rekening  pemakai 

     kepada  administrator  sistem.  Jika  administrator   sistem 

     menyetujui,  maka ia akan membuatkan rekening  pemakai  baru 

     bagi kita serta menyediakan home direktori sebagai direktori 

     tempat kita bekerja. 

          Jangan lupa pula menanyakan nama pemakai bagi  rekening 

     kita,  sebab nama tersebut tidak selalu sesuai  dengan  nama 

     kita  yang  sesungguhnya.  Pada umumnya  nama  pemakai  pada 

     rekening pemakai adalah 8 karakter. 

          Perlu  ditanyakan pula apakah password sudah  diberikan 

     ke dalam rekening tersebut.

          Setelah  langkah-langkah di atas telah dilakukan,  maka 

     kita  siap  menggunakan terminal UNIX. Layar  terminal  kita 

     terlihat sebagai berikut:

          login:

          Untuk  masuk  ke dalam sistem UNIX kita  harus  melalui 

     proses  login,  yang akan memeriksa  apakah  kita  diijinkan 

     masuk  ke  dalam sistem. Proses pemeriksaan  dilakukan  oleh 

     sistem dengan cara memeriksa nama pemakai dan password  yang 

     kita masukkan ke dalam sistem. Berikut ini akan  dicontohkan 

     cara  memasukkan nama pemakai dan password ke dalam  sistem, 

     dimana  nama  pemakai adalah denny  dan  passwordnya  adalah 

     yerianto.

          login: denny            (masukkan nama pemakai)

          password: yerianto      (yerianto tak tampak dilayar)

                            Welcome to UNIX System V

                             for personal computers

                               Brought to you by

                            The Santa Cruz Operation 

          $                       (prompt tanda shell siap)

          Pengetikan password tidak akan ditampakkan pada  layar. 

     Hal ini bertujuan untuk merahasiakan password yang diketik.

          Tanda  prompt  menandakan jenis shell  yang  digunakan. 

     Tanda  prompt $ adalah menandakan jenis shell  Bourne  shell 

     atau  Korn shell. Sedangkan tanda prompt % menandakan  jenis 

     shell C shell.

          Kini  kita telah berada di dalam sistem UNIX.  Tepatnya 

     di dalam home directory yang telah ditentukan sesuai  dengan 

     yang tercantum pada rekening pemakai. Kita dapat menjalankan 

     perintah-perintah UNIX yang diijinkan bagi kita. 

          Marilah   kita  coba beberapa perintah  UNIX.  Perintah 

     pertama   yang   akan  kita  coba  adalah   perintah   untuk 

     menampilkan  karakter  ke  layar  terminal.  Perintah   yang 

     digunakan  adalah perintah echo yang diikuti dengan  argumen 

     berupa  karakter  yang akan ditampilkan ke  layar  terminal. 

     Perhatikan contoh berikut ini:

          $ echo selamat datang di dunia UNIX

          selamat datang di dunia UNIX

          $

          Kita  juga  dapat menampilkan siapa saja  pemakai  yang 

     sedang   aktif   di  dalam  sistem  UNIX   sekarang   dengan 

     menggunakan  perintah who sebagai berikut:

          $ who

          heru       tty05        Oct 23 07:30

          root       tty01        Oct 23 07:28

          denny      tty02        Oct 23 07:28

          ucrit      tty03        Oct 23 07:29

          chaerind   tty04        Oct 23 07:30

          kamin      tty06        Oct 23 10:29

          suibam     tty07        Oct 23 11:01

          unyil      tty08        Oct 23 11:29

          satria     tty09        Oct 23 11:30

          $

          Atau kita juga dapat melihat tanggal dan waktu sekarang 

     dengan menggunakan perintah date.

          $ date

          Fri Oct 23 07:28:32 PDT 1992

          $

          Untuk  masuk ke dalam sistem UNIX, kita  harus  melalui 

     suatu proses yang disebut dengan proses login seperti 

     telah  diuraikan  pada awal sub bab ini. Untuk  keluar  dari 

     sistem, kita juga harus melakukan suatu proses yang  disebut 

     dengan proses logout. Ada tiga cara untuk keluar dari sistem 

     UNIX yaitu:

          $ exit

          login:

          atau

          $ ^D                          (tekan kontrol dan D)

          login:

          atau 

          $ logout

          login:

          Ingat, setiap sebelum meninggalkan terminal, kita harus 

     melakukan proses logout. Jika tidak maka pemakai lain  dapat 

     menggunakan  rekening pemakai milik kita.  Pemakai  tersebut 

     dapat  bertindak  apa saja dengan  mengatasnamakan  rekening 

     pemakai kita.

     2.3 PASSWORD DAN MASALAH KEAMANANNYA

          Terkadang  administrator  sistem  membuatkan   rekening 

     pemakai  baru tanpa memberikan password.  Akibatnya  setelah 

     kita mengisikan nama pemakai, maka pengisian password  tidak 

     dilakukan  dan langsung masuk ke dalam sistem UNIX. Hal  ini 

     dapat dimisalkan sebagai rumah yang tidak terkunci pintunya. 

     Keadaan ini akan sangat berbahaya bagi kita, karena  pemakai 

     lain dapat masuk dan menggunakan rekening kita. Oleh  karena 

     itu  maka  sebaiknya rekening tersebut harus  segera  diberi 

     password. 

          Perintah  yang digunakan untuk membuat atau   mengganti 

     password adalah perintah passwd. Jika sebelumnya kita  tidak 

     memiliki  password, maka cara yang digunakan  untuk  membuat 

     password baru adalah sebagai berikut:

          $ passwd

          Changing password for denny

          New password: yerianto     (tak tak tampak pada layar)

          Re-enter new password: yerianto

          $

          Jika sebelumnya kita sudah memiliki password, maka cara 

     yang  dapat digunakan untuk mengganti password  lama  adalah 

     sebagai berikut:

          $ passwd

          Changing password for denny

          Old password : yerianto

          New password : gontaganti

          Re-enter new password : gontaganti      (konfirmasi)

          $

          Sebelum   kita  mengganti  password  lama,  maka   kita 

     diwajibkan  untuk  memasukkan password lama. Hal  ini  untuk 

     memastikan bahwa kita memang berhak mengganti password  dari 

     rekening pemakai tersebut. Perhatikan contoh berikut  dimana 

     pemakai  yang akan mengganti password lama  tidak  diijinkan 

     mengganti dengan password baru dikarenakan tidak  mengetahui 

     password lamanya.

          $ passwd

          Changing password for denny

          Old password : gantiganti    (seharusnya gontaganti !)

          sorry.

          $

          Pada bagian akhir proses penggantian password dilakukan 

     konfirmasi  untuk  memastikan  tidak  ada  kesalahan   isian 

     password  baru. Jika terjadi kesalahan pada konfirmasi  maka 

     perubahan  dibatalkan  dan diulang kembali.  Jika  kesalahan 

     lebih   dari   tiga  kali  maka  proses   penggantian   akan 

     dibatalkan.  Perhatikan  contoh  berikut  ini  :

          $ passwd

          Changing password for denny

          Old password : gontaganti

          New password : yerianto

          Re-enter new password : gontaganti        (yerianto ?)

          They don't match; try again.

          Re-enter new password: gantiganti         (yerianto ?)

          They don't match; try again.

          Re-enter new password: jerianto           (yerianto ?)

          Too many tries; try again later.

          $

          Pada  umumnya panjang minimal karakter  yang  digunakan 

     untuk password adalah lima karakter (beberapa UNIX ada  yang 

     mensyaratkan  8  karakter). Jika  jumlah  karakter  password 

     kurang  dari  yang ditentukan maka proses  penggantian  akan 

     dibatalkan.

          $ passwd

          Changing password for denny

          Old password : gontaganti

          New password : chae               (minimal 5 karakter)

          Too short. Password unchanged.

          $

          Hal  yang penting untuk diperhatikan  dalam  memelihara 

     password, yaitu kemungkinan pembongkaran password milik kita 

     oleh  orang lain yang tidak berhak. Banyak cara  yang  telah 

     dilakukan   oleh  para  hacker  untuk  membongkar   password 

     sesorang. Tujuan mereka beraneka ragam, dari sekedar mencari 

     kepuasan terhadap keberhasilan membongkar hingga upaya  yang 

     disengaja untuk mengacaukan sistem kita.

          Berikut  ini  akan  diberikan  panduan  praktis   untuk 

     melindungi  password kita agar tidak mudah  dibongkar  orang 

     lain.

          a. Password  harus  mudah  diingat  oleh  kita  sendiri 

             tetapi tidak mudah diingat oleh orang lain.

          b. Jangan  menggunakan bagian dari nama lengkap,   nama 

             panggilan,  nama  kekasih, tanggal  lahir,  inisial, 

             dan hal lain yang berhubungan dengan diri kita. Atau 

             jangan  pula menggunakan  nama tempat, nama  gedung, 

             atau kata-kata yang lazim ada di kamus bahasa .

             contoh:

               - denny         (nama pemakai sendiri)

               - yerianto      (nama akhir)

               - 20011969      (tanggal lahir)

               - 7270165       (nomor telepon)

               - elexmedia     (nama instansi)

               - jembatan      (kata yang lazim)

             Jika  masih tetap menginginkan  kata-kata  tersebut, 

             seharusnya   kata-kata  tersebut   diacak   terlebih 

             dahulu,  misalnya dengan cara membalik urutan  huruf 

             sehingga sepintas lalu agak sulit diterka.

               - ynned         (nama pemakai sendiri, denny)

               - 96911002      (tanggal lahir, 20011969)

               - 5610727       (nomor telepon, 7270165)

               - aidemxele     (nama instansi elexmedia)

             Terkadang    kata-kata   'plesetan'   dapat    lebih 

             menyulitkan pembongkaran password. 

             Contoh:

               - bon7ovi      (bon jovi, penyanyi rock)        

               - rock 4U      (rock for you)

               - man7des      (mantu judes)

          c. Jika  mengalami kesulitan dalam menghafal  password, 

             jangan  melakukan pencatatan pada buku, papan  tulis 

             atau tempat lain. Hal ini akan memudahkan orang lain 

             untuk  melihat  dan kemudian  membongkarnya.  Tempat 

             yang paling aman adalah di dalam otak kita.

          d. Gunakan  lebih  dari  enam  karakter  dan  sebaiknya 

             mencakup karakter-karakter  non alfabet. 

             Contoh:

               - s_AR2_c3

               - dg71m33ex

               - ada blank !

               - 7d2u5u9r=

               - 1/3disayu

             Sebenarnya,   password  yang  paling  ideal   adalah 

             gabungan  alfabet  dan non alfabet  karakter  dengan 

             rangkaian yang tak bermakna. Namun sayangnya hal itu 

             sangat sulit untuk dihafalkan. 

             Cara   berikut  ini  akan   menghasilkan   rangkaian 

             karakter  password  yang  mudah  dihafal  oleh  kita 

             tetapi cukup sulit dihafal oleh orang lain.  Caranya 

             adalah dengan mengambil karakter awal suatu  kalimat 

             panjang  yang mudah diingat. Gabungan karakter  awal 

             tersebut akan membentuk rangkaian karakter password. 

             Selanjutnya   yang  perlu   kita   hafalkan   adalah 

             kalimatnya,  bukan rangkaian  karakter  passwordnya. 

             Kalimat tersebut bisa sebagai peribahasa, awal  lagu 

             dan lain-lain. Perhatikan contoh berikut ini:

             o bka5rrw    balon ku ada 5 rupa rupa warnanya

             o tagytr     tak ada gading yang tak retak

             o dksnkk     dut keredut si nini kapi kadut

             o jlpmrsgh   jhon lenon paul mccartney ringo 

                          star george harrison

          Perhatian, jika kita lupa password rekening pemakainya, 

     maka tak ada mekanisme apa pun yang dapat menemukan  kembali 

     password yang terlupakan tersebut. 

     2.4 FORMAT UMUM PERINTAH UNIX

          Shell  bertanggung  jawab  untuk  mengeksekusi  seluruh 

     program  yang  kita  panggil  dari  terminal.  Setiap   kita 

     memasukkan  sebaris kata-kata dan diakhiri dengan  enter  ke 

     dalam  shell, shell akan menganalisa kata-kata tersebut  dan 

     menentukan  apa  yang  harus dikerjakan.  Format  umum  yang 

     diterima oleh shell adalah sebagai berikut:

          nama-program argumen-argumen

          Baris kata-kata yang diketik ke dalam shell ini disebut 

     perintah baris. Shell akan memeriksa perintah baris ini  dan 

     menentukan nama program yang dieksekusi dan  argumen-argumen 

     yang dilewatkan kepadanya.

          Shell  menggunakan  karakter  khusus  untuk  menentukan 

     dimana  nama  program dimulai dan diakhiri dan  dimana  nama 

     masing-masing  argumen dimulai dan diakhiri  pula.  Karakter 

     yang digunakan untuk menandakan hal tersebut adalah karakter 

     whitespace yaitu berupa karakter spasi (space), karakter tab 

     dan  karakter  newline. Pemunculan karakter  tersebut  lebih 

     dari satu kali akan diabaikan oleh shell.

          cp file1 file2

          Shell  akan  memeriksa  perintah  baris  tersebut   dan 

     mengambil karakter dari awal baris hingga ditemukan karakter 

     whitespace sebagai nama program, yaitu cp. Kumpulan karakter 

     sesudah   karakter  whitespace  tersebut  hingga   ditemukan 

     kembali karakter whitespace adalah sebagai argumen  pertama, 

     yaitu   file1.  Selanjutnya  mulai  dari  sesudah   karakter 

     whitespace   kedua  hingga  ditemukan  karakter   whitespace 

     selanjutnya  adalah  argumen ke dua,  yaitu  file2.  Setelah 

     analisa perintah baris ini, shell mengetahui bahwa yang akan 

     dieksekusi adalah perintah cp dengan argumen-argumen ke satu 

     adalah  file1 dan argumen ke dua adalah file2. Hal ini dapat 

     digambarkan sebagai berikut:

                                          +----------+

            +---------+    argumen        |   file1  |

            |   cp    |<- - - - - - - - - +----------+

            +---------+                   |   file2  |

                                          +----------+

            Gambar 2.2 Eksekusi perintah cp dengan 2 argumen

          Pada  sistem UNIX terdapat ratusan perintah yang  dapat 

     dimanfaatkan   untuk  mengelola  sistem.   Perintah-perintah 

     tersebut  pada  umumnya  memiliki  argumen.  Argumen-argumen 

     memiliki bentuk berupa:

      a. Pilihan  (option)

         Pada  umumnya  pilihan  di  awali  oleh  tanda  pilihan, 

         misalnya tanda minus '-'. Beberapa perintah  mengijinkan 

         penggabungan   pilihan  sekaligus  dalam  sebuah   tanda 

         pilihan.  Disamping  tanda pilihan  minus,  sering  juga 

         digunakan tanda pilihan plus '+' atau bahkan tanpa tanda 

         pilihan. Pilihan dapat memiliki argumen

     b.  Ekspresi

         Ekspresi merupakan kumpulan aturan yang mengatur masukan 

         untuk perintah (akan dijelaskan pada bab lain)

     c.  Namafile

         Namafile  adalah nama dari file yang akan  dimanipulasi. 

         Pada  umumnya file yang akan dimanipulasi oleh  perintah 

         dapat lebih dari satu.

           Secara umum derajat dari argumen-argumen tersebut pada 

     sebuah perintah UNIX adalah:

          Perintah pilihan ekspresi namafile

          Pemanfaatan pilihan, ekspresi dan nama file bagi  suatu 

     perintah  sesuai  dengan kebutuhannya.  Artinya  kita  dapat 

     menggunakan sebagian atau seluruhnya atau tidak  menggunakan 

     sama sekali sesuai dengan format yang disediakan. Perhatikan 

     contoh-contoh  berikut  ini  (arti  dari   perintah-perintah 

     berikut akan dijelaskan kemudian):

          $ rm file1 file2 file3

                  |     |    |

                  |     |    +---------------> namafile

                  |     +--------------------> namafile

                  +--------------------------> namafile

          $ ls -alR

                  |

                  +--------------------------> gabungan pilihan

          $ grep -v "pasal[1-12]" file1

                  |         |         |

                  |         |         +------> namafile

                  |         +----------------> ekspresi

                  +--------------------------> pilihan

                Gambar 2.3 perintah rm, ls dan grep

          Untuk  melakukan pemanggilan lebih dari  satu  perintah 

     dalam  satu  baris, dapat kita gunakan tanda  semicolon  ';' 

     sebagai pemisah antar perintah.

          $ date ; who; echo selamat datang di UNIX

          Fri Oct 23 07:28:32 PDT 1992

          root       tty01        Oct 23 07:28

          denny      tty02        Oct 23 07:28

          ucrit      tty03        Oct 23 07:29

          chaerind   tty04        Oct 23 07:30

          kamin      tty06        Oct 23 07:30

          suibam     tty07        Oct 23 07:30

          unyil      tty09        Oct 23 07:30

          selamat datang di UNIX

          $

     2.5 KARAKTER DAN TOMBOL KHUSUS UNIX      

          Shell akan memberi arti khusus pada beberapa  karakter.  

     Karakter-karakter  ini  memiliki  fungsi  khusus,   sehingga 

     pemunculannya akan diartikan khusus pula oleh shell. Berikut 

     ini adalah tabel dari karakter khusus dan fungsinya.

          -------------------------------------------------------

          Karakter  Fungsi

          -------------------------------------------------------

          "..."     Mencegah tindakan karakter khusus dalam 

                    untaian  karakter  yang  disertakan,   tetapi 

                    memperbolehkan karakter khusus untuk ekspansi 

                    variabel dan perintah bekerja.

          $         Menyebabkan substitusi variabel shell

          &         proses latar belakang 

          '...'     Mencegah  karakter  khusus  yang  ada   dalam 

                    untaian karakter yang disertakan

          ()        Memberi  daftar  perintah  untuk   dikerjakan 

                    sebagai proses terpisah

          *         karakter   yang  dapat   mencocokkan   dengan 

                    untaian karakter apa saja

          -         menunjukkan tanda pilihan dari perintah  yang 

                    menyertainya

          /         memisahkan   bagian   dari   nama    jalurnya 

                    direktorinya

          :         memisahkan  harga untaian  karakterpada  saat 

                    membuat  sebuah variabel  shellmenjadi  lebih 

                    dari satu untaian karakter

          ;         memisahkan beberapa perintah dalam satu baris

          ;;        delimiter pada perintah case

          <         masukan standar

          >         keluaran standar

          ?         karakter   yang  dapat   mencocokkan   dengan 

                    karakter tunggal apa saja

          [...]     mengelompokkan karakter untuk pencocokkan

          \         mencegah karakter khusus yang mengikutinya

          {}        mengelompokkan daftar perintah

          |         membentuk pipa antar perintah

          -------------------------------------------------------

                         Tabel 2.1 Karakter khusus

          Disamping  karakter  khusus,  terdapat  pula   beberapa 

    tombol yang memiliki makna tertentu. Berikut ini adalah tabel 

    dari tombol khusus dan fungsinya:

          -------------------------------------------------------

          Singkatan Arti                          Tombol

          -------------------------------------------------------

          intr      gagalkan operasi              Del (Delete)

          quit      gagalkan dengan core dump     ^\ (Ctrl-\)

          erase     hapus dengan backspace        ^H (Backspace)

          kill      hapus baris                   ^U (Ctrl-U)

          eof       bangkitkan end-of-file        ^D (Ctrl-D)

          eol       pilihan end-of-line           ^@ (NULL)

          swtch     job-control switch            ^@ (NULL)

          -------------------------------------------------------

                         Tabel 2.2 Tombol khusus

          Tombol-tombol tersebut dapat kita definisi ulang dengan 

    menggunakan  perintah stty. Misalnya UNIX pada komputer  yang 

    kita gunakan menggunakan tombol del untuk melakukan erase  dan 

    kontrol-C  untuk intr, maka  kita dapat  mengubah  lingkungan 

    kita seperti terlihat pada tabel di atas dengan cara  sebagai 

    berikut:

          $ stty intr "^?" erase "^H"

          $

          Untuk  melihat  tombol yang telah terdefinisi  di  dalam 

    lingkungan kita, dapat digunakan cara sebagai berikut:

          $ stty -a

          speed 9600 baud; line = 0; intr = DEL; quit = ^\; erase = ^H;

          kill = ^U; eof = ^D; eol = ^@; swtch = ^@ -parenb -parodd cs8 

          -cstopb hupcl cread -clocal -loblk -ctsflow -rtsflow -ignbrk 

          brkint ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl -iuclc 

          ixon ixany -ixoff isig icanon -xcase echo echoe echok -echonl 

          -noflsh opost -olcuc onlcr -ocrnl -onocr -onlret -ofill -ofdel 

          cr0 nl0 tab3 bs0 vt0 ff0 

          $

     2.6 PERTOLONGAN TENTANG PERINTAH

          Jika  kita  mengalami  kesulitan  dalam  mengoperasikan 

     UNIX,  ada  sumber daya informasi yang  dapat  kita  gunakan 

     yaitu  buku  manual UNIX. Di dalam  buku  tersebut  terdapat 

     penjelasan   yang  rinci  tentang  berbagai   hal   termasuk 

     pertolongan  tentang  perintah-perintah  yang  kita   kurang 

     mengerti.

          Beberapa   UNIX   menyediakan   fasilitas   pertolongan 

     langsung  di dalam sistem terhadap perintah yang tidak  kita 

     kenal,  yaitu menggunakan perintah man dengan  diikuti  nama 

     perintah yang ingin diketahui.

          man perintah

          Setelah  pemanggilan  perintah tersebut di  atas,  maka 

     akan  ditampilkan  manual  dari  perintah  yang  ditanyakan. 

     Manual  perintah ditampilkan dalam bentuk yang telah  ditata  

     menggunakan   text  formatter.  Manual  tersebut   berisikan 

     informasi tentang:

          a. Nama (name)

             Nama perintah atau program  dan keterangan singkat.

          b. Tata kalimat (syntax)

             Menguraikan  tentang tata cara menggunakan  perintah 

             UNIX.  Keterangan yang diberi kurung siku atau  '[]' 

             adalah  pilihan  atau option. Pada  umumnya  pilihan 

             didahului tanda minus. 

             Contoh:

               translate [-f rules] [-d] file [output-file]

             Perintah ini dapat digunakan sebagai berikut:

                translate source

                translate -f myrules source

                translate -d source

                translate source destination

                translate -f myrules -d source destination

          c. Deskripsi (description)

             Menguraikan aksi dari perintah tersebut, termasuk di 

             dalamnya   adalah  penjelasan   dari   masing-masing 

             pilihan dan parameternya.

          d. Lihat juga (see also)

             Acuan ke perintah lain. 

          e. File-file

             Merupakan  daftar  file yang  menjalankan  perintah. 

             File-file ini mungkin sebagai subyek dari perintah. 

          f. Catatan (Notes)

             Komentar-komentar mengenai keterbatasan atau bahaya-

             bahaya dari penggunaan perintah ini.

          g. Kesalahan (Bugs)

             Berisi  daftar  kesalahan yang  telah  diketahui  di 

             dalam program. 

          Beberapa   UNIX   menggunakan   perintah   help   untuk 

    menampilkan  pertolongan. Program help lebih cepat dari  pada 

    man   dalam   menampilkan  pertolongan  karena   help   tidak 

    menggunakan  text  formatter. Pada umumnya  help  menampilkan 

    tata  kalimat  perintah atau program dan  sebaris  penjelasan 

    tentang pilihan.

          $ help more

          more:

          MORE - View File by Screenful or by Line

          $ more [options] [files]

          Options:

            + /pat     start two lines beforeline containing pat

             -c        redraw page on line at a time

             -d        prompt after Screenfull

             -f        count by newlines instead of screen lines

             -l        treat formfeed (^L) as ordinary character

             -n        window size (default set with stty)

             +n        start viewing file at line n

             -r        display control character as ^C

             -s        reduce multiple blank lines to one

             -u        suppress terminal underlining or enhancing

             -w        prompt before exiting (any key terminates)

             ? or h    show summary of more commands

          $

BAB 3

FILE DAN DIREKTORI

          Bab  ini  akan  menjelaskan  tentang  konsep  file  dan 

     direktori  serta bagaimana menggunakannya di  dalam   sistem 

     UNIX. Pembahasan akan mencakup mengenai:

          - pengertian file dan direktori

          - aturan penamaan file dan direktori

          - menggunakan perintah dasar dengan pwd, ls, cd

          - melihat isi file dengan cat, pg

          - menentukan jenis file

          - membuat dan menghapus direktori

          - menggunakan perintah file dengan cp, mv dan rm

          - substitusi nama file

          - perijinan dan proteksi 

     3.1 PENGERTIAN FILE DAN DIREKTORI

          Sistem  file  pada  sistem  UNIX  dapat   dikelompokkan 

     menjadi 3 jenis yaitu:

          a. File biasa

             adalah   file  yang  umumnya  kita   gunakan   untuk 

             menyimpan data, seperti program atau dokumentasi.

          b. File khusus

             tidak  seperti  halnya  kebanyakan  sistem   operasi 

             lainnya,  misalnya  DOS,  UNIX  memperlakukan  semua 

             piranti  atau peralatan yang terhubung  ke  dalamnya 

             sebagai  file.  Piranti-piranti tersebut  oleh  UNIX 

             dikelompokkan  menjadi  dua, yaitu:

             o piranti blok 

               piranti  blok   akan menyalurkan datat dalam  blok 

               512 byte, misalnya disk. 

             o piranti karakter    

               piranti  karakter menyalurkan data  satu  karakter 

               setiap   saat,  misalnya  terminal.   

             Piranti-piranti  ini  semua biasanya  diletakkan  di 

             dalam sebuah direktori khusus, yaitu direktori /dev.

          c. Direktori

             adalah file yang berisi kumpulan file. Kumpulan file 

             dapat  berupa  file biasa atau file  khusus,  bahkan 

             dapat  pula berisi direktori  sehingga  memungkinkan 

             direktori  berisi direktori. Sebagai hasilnya,  UNIX 

             memiliki  sistem  direktori  yang  berbentuk  sebuah 

             pohon atau tree.

                              /

                              |

                  ..+----+----+----...----+----...

                    |    |    |           |

                   bin  dev  etc ...     usr

                                          |

                        ..+----------+----+----+----...

                          |          |         |

                         bin        mhs      staf

                         ...         |         |

                            ... +----+----+  +----+---- ...

                                |    |    |  |    |

                              denny ...  ... heru dono

                                .             .   .

                                .             .   .

                                .             .   .

                    Gambar 3.1 Sistem direktori pohon

             Penamaan  direktori  ditandai  dengan  sebuah   '/'. 

             Direktori   utama  untuk  seluruh   sistem   disebut 

             direktori  root  atau  direktori  akar  dan  ditulis 

             sebagai  '/'. Direktori root memiliki direktori lain 

             sebagai   anggota.   Beberapa   diantaranya   adalah 

             direktori  bin,  direktori dev, direktori  etc,  dan 

             direktori  usr.  Karena  mereka  merupakan   anggota 

             direktori root, namanya ditulis sebagai /bin , /dev, 

             /etc  dan /usr.

                Direktori  /usr  dapat memiliki  direktori  lain, 

             misalnya  direktori  staf dan  mhs.  Nama  direktori 

             dituliskan /usr/staf  dan /usr/mhs. Nama jalur  dari 

             root  hingga ke direktori tertentu disebut  complete 

             path name atau nama lengkap jalur. Perhatikan  bahwa 

             direktori /usr/bin dan /bin berbeda. Mereka  mungkin 

             memiliki  nama  akhir yang sama  tetapi  nama  jalur 

             lengkapnya berbeda.

          Panjang nama file dan direktori dapat lebih dari  empat 

     belas  karakter,  yang  terdiri  karakter  apa  saja.  Namun 

     demikian, beberapa karakter telah memiliki arti khusus  bagi 

     shell, sehingga penggunaan karakter tersebut pada nama  file 

     dan direktori sebaiknya dihindari (perhatikan tabel karakter 

     khusus pada bab sebelumnya). Berikut ini contoh-contoh  dari 

     nama file yang benar:

               - coba

               - COBA

               - 1992

               - prog1.c

               - prog2.c

               - mhs_S1

               - old-prog

               - old_prog

          Berikut ini adalah contoh nama-nama file yang sebaiknya 

     dihindari.

               - >cobaaku

               - coba|aku

               - sia?a

               - [repot]

               - pau<ik

               - $prosilkom

               - sampah**

          Pemilihan  nama file yang baik adalah dengan  membatasi 

     hanya menggunakan huruf besar dan kecil, bilangan,  karakter 

     garis  bawah dan titik. Titik sebaiknya hanya  digunakan  di 

     tengah  nama  file.  Penggunaan titik pada  awal  nama  file 

     menyebabkan file tersebut dinyatakan tersembunyi (hidden).

          Perlu  diingat bahwa UNIX akan membedakan  antara  nama 

     file dengan huruf kecil dan huruf besar. Berikut ini  adalah 

     contoh nama-nama file yang berbeda.

               - PESAN vs pesan

               - Pesan_pesan vs pesan_Pesan

               - PESAN vs PeSAN

               - program.c vs program.C

               - 12345 vs 012345

          Coba  bandingkan penamaan dengan sistem  operasi  lain, 

     misalnya DOS.

          Untuk pengaturan akses bagi file dan direktori,  setiap 

     file dan direktori sistem UNIX memiliki  tiga jenis  pemakai 

     yaitu:

          o Pemilik (owner)

            Pemilik  adalah pemakai yang memiliki file  tersebut, 

            biasanya  orang  yang pertama kali  menciptakan  file 

            tersebut. Untuk mengubah kepemilikan file tersebut ke 

            pemakai lainnya, dapat digunakan perintah chown.

          o Group (group)

            Beberapa pemakai dapat di kelompokkan ke dalam sebuah 

            group. File atau direktori yang mempunyai kepemilikan 

            ini  mengakibatkan  hanya pemakai anggota group  yang 

            dapat mengakses.

          o Orang lain (others)

            Seluruh  pemakai  sistem adalah termasuk  jenis  ini. 

            File  atau direktori yang mempunyai  kepemilikan  ini 

            mengakibatkan semua orang dapat mengaksesnya.

          Masing-masing dapat memiliki mode perijinan berupa ijin 

     baca  (r),  ijin  tulis  (w)  dan  ijin  eksekusi  (x)  atau 

     kombinasi  ketiganya.  Pembahasan yang lebih  mendalam  akan 

     diuraikan pada sub bab yang membahas mengenai proteksi file. 

     3.2 MENCETAK DIREKTORI YANG SEDANG BEKERJA DENGAN pwd

          Ketika   kita   masuk  ke  dalam  sistem   UNIX,   maka 

     kita  langsung  berada  di dalam  direktori.  Direktori  ini 

     disebut  home directory. Setiap kita masuk ke dalam  sistem, 

     kita  akan  menemukan  lokasi  kita  selalu  pada  direktori 

     tersebut.  Untuk  melihat nama direktori  yang  sedang  kita 

     gunakan,  dapat  digunakan perintah pwd.  Perhatikan  contoh 

     berikut ini.

          $ pwd               

          /usr/mhs/denny       (direktory yang sedang kita pakai)

          $

          Nama  direktori  yang  ditampilkan  oleh  perintah  pwd 

     adalah  nama jalur lengkap bagi direktori kita.  Nama  jalur 

     lengkap  yang diberikan oleh pwd menunjukkan direktori  lain 

     yang berhubungan dengan direktori kita. 

          Perhatikan  contoh  sebelumnya,  /usr/mhs/denny.   Pada 

     contoh tersebut terdapat tiga buah direktori, yaitu:

          - usr

          - mhs

          - denny

          Secara  implisit  sesungguhnya  ada  empat   direktori, 

     dimana  direktori yang belum disebut adalah  direktori  akar  

     (root) sistem file. Ingat, direktori akar dinyatakan  dengan 

     '/'. Jadi secara lengkap kita dapat katakan bahwa  direktori 

     yang ada pada /usr/mhs/denny adalah:

          - /                 (akar atau 'root')

          - usr

          - mhs

          - denny

     3.3 MELIHAT ISI DIREKTORI DENGAN ls

          Perintah  ls akan meminta sistem untuk menampilkan  isi 

     dari sebuah direktori. Jika nama direktori tidak  disebutkan 

     pada  perintah  ls, maka sistem akan  menampilkan  isi  dari 

     direktori yang sedang digunakan.

          $ ls    (tampilkan isi direktori yang sedang digunakan)

          $

          Perintah ls tidak menampilkan apa-apa, hal ini  berarti 

     tidak ada file di dalam direktori tersebut. Tapi  perhatikan 

     jika  kita  gunakan  pilihan -a dan -l.   Pilihan  -a  untuk 

     menampilkan  semua file pada direktori,  termasuk  file-file 

     yang  tersembunyi  (hidden). Pilihan  -l  untuk  menampilkan 

     bentuk  panjang, tanpa pilihan ini maka hanya nama file  dan 

     dan direktori saja yang ditampilkan. 

          $ ls -al

          total 47

          drwxr-xr-x   2 denny    mhs           32 May 21 05:41 .     

          drwxrwxr-x  12 mhs      mhs          240 Jan  4 12:42 ..    

          $

          Kini perintah ls menampilkan dua buah direktori.  Huruf 

     'd' pada kolom pertama menunjukkan direktori. Kolom ke  tiga 

     menunjukkan pemilik dari file tersebut. Sedangkan nama  file 

     itu sendiri dinyatakan pada kolom terakhir, bernama '.'  dan 

     '..'.

          Karakter titik '.' ada pada setiap direktori.  Karakter 

     titik   '.'  menyatakan  direktori  yang  sedang   digunakan 

     sekarang  atau  current directory. Sedangkan  karakter  '..' 

     menyatakan direktori ayah atau parent directory,  atau dapat 

     dikatakan  sebagai  satu direktori di  atas  direktori  yang 

     sedang  digunakan  sekarang. Untuk jelasnya,  dapat  dilihat 

     pada gambar berikut:

                                 /

                                 |

                    +---------------------- ...

                    |        

                   usr       

                    |

               +----+---- ...

               |         

              mhs   (mhs adalah '..' dari /usr/mhs/denny)   

               |

          +----+---- ...

          |

        denny       (denny adalah '.' dari /usr/mhs/denny)

                       Gambar 3.2 Penjelasan '.' dan '..'

          Berikut  ini akan ditampilkan pemanggilan  perintah  ls 

     diikuti direktori.

          $ ls /         (lihat isi direktori root)

          bin

          coba

          dev

          etc

          home

          lib

          lost+found

          tmp

          usr

          $

          Mungkin  hasil  yang  ditampilkan  pada  terminal  Anda 

     berbeda  dengan  hasil  pada gambar di  atas.  Pertama,  isi 

     direktori  berbeda. Namun demikian, file-file  seperti  bin, 

     dev, etc dan usr pasti tercantum.

          Kedua,  isi direktori ditampilkan tidak satu  file  per 

     barisnya tetapi beberapa file per baris. Versi standar  UNIX 

     untuk perintah ls adalah satu file perbaris, namun  demikian 

     disediakan  pula pilihan untuk membuat tidak satu  file  per 

     baris,  yaitu  dengan pilihan -x atau -C.  Pilihan  -x  akan 

     menampilkan  isi  direktori dengan beberapa  nama  file  per 

     baris. Nama tersebut diurut secara abjad ke samping. 

          $ ls -x / 

          bin    coba   dev    etc    home    lib    lost+found

          tmp    usr

          $

          Pilihan  -C  juga  menampilkan  isi  direktori   dengan 

     beberapa  nama file per baris, tetapi nama  tersebut  diurut 

     per kolom ke bawah.

          $ ls -C /

          bin    dev    home   lost+found    usr

          coba   etc    lib    tmp

          $

          Namun cara di atas tidak dapat menunjukkan kepada  kita 

     mengenai  jenis  filenya, file biasa atau  direktori.  Untuk 

     melihat informasi tersebut dapat kita gunakan pilihan -l.

          $ ls -l /

          total 10

          drwxr-xr-x   2 bin      bin         1216 Nov 25 10:42 bin

          -rwx------   1 root     root         290 May 16 10:11 coba

          drwxr-xr-x   2 root     root         960 Nov 25 10:41 dev

          drwxr-xr-x   2 root     root         512 Dec 22 21:22 etc

          drwxr-xr-x   2 root     root         160 Nov 12 07:07 home

          drwxr-xr-x   2 root     root          32 Apr 10 19:41 lib

          drwxr-xr-x   2 root     root          32 Apr 10 19:21 lost+found

          drwxr-xr-x   2 root     root         734 Feb 14 11:09 tmp

          drwxr-xr-x  19 bin      bin          368 Nov 25 12:13 usr

          $

          Huruf  'd'  pada  awal  baris  menyatakan  bahwa   file 

     tersebut berjenis direktori. Jika diawali oleh karakter  '-' 

     maka file tersebut adalah file biasa atau file khusus.

          Cara   lain  untuk  melihat  apakah  nama   file   yang 

     ditampilkan  direktori atau bukan adalah dengan  menggunakan 

     pilihan  -p.  Pilihan  -p akan  menampilkan  nama-nama  file 

     dimana  file berjenis direktori akan diberi  karakter  garis 

     miring  sesudah  namanya. Tapi awas, karakter  garis  miring 

     tersebut bukan bagian dari namanya, hanya penunjuk saja.

          $ ls -p /

          bin/

          coba

          dev/

          etc/

          home/

          lib/

          lost+found/

          tmp/

          usr/

          $

          Cara   yang  hampir  sama  dengan  pilihan  -p   adalah 

     menggunakan  pilihan  -F.  Bedanya,  pilihan  ini  disamping 

     memberi  karakter garis miring pada direktori, akan  memberi 

     bintang * pada file-file yang dapat dieksekusi.

          $ ls -F

          dir1/                    (direktori) 

          dir2/                    (direktori)

          eks1*                    (dapat dieksekusi)

          eks2*                    (dapat dieksekusi)

          $

          Jika diinginkan, kita dapat juga menampilkan  file-file 

     tertentu saja.

          $ ls -l /bin/ar

          -r-xr-xr-x   1 bin      bin        21428 Sep 24 1983 /bin/ar

          $ ls -l /bin/ar /etc/passwd 

          -r-xr-xr-x   1 bin      bin        21428 Sep 24 1983 /bin/ar

          -rwx------   1 root     root        2123 Dec 24 1989 /etc/passwd

          $

          Namun jika yang diinginkan adalah menampilkan direktori 

     tertentu  saja,  maka cara di atas  tidak  dapat  dilakukan. 

     Misalnya  kita  ingin  melihat  apakah  di  dalam  direktori 

     tertentu ada direktori denny (/usr/mhs/denny)

          $ pwd

          /usr/mhs

          $ ls -l denny             (lihat /usr/mhs/denny ?)

          drwxr-xr-x   2 denny    mhs           32 May 21 05:41 .     

          drwxrwxr-x  12 mhs      mhs          240 Jan  4 12:42 ..    

          $

          Ternyata  yang  ditampilkan adalah isi  dari  direktori 

     yang   /usr/mhs/denny  dan  bukan  hanya  menampilkan   nama 

     direktori  yang  kita minta (perhatikan  operasi  yang  sama 

     terhadap  file).  Untuk keperluan  tersebut  maka  digunakan 

     pilihan -d sebagai berikut:

          $ pwd

          /usr/mhs

          $ ls -ld denny

          drwxrwxr-x   2 mhs      mhs          240 Jan  4 12:42 denny

          $

          Pada  beberapa  contoh di atas,  file-file  ditampilkan 

     dengan  disertai informasi lengkap mengenainya. Berikut  ini 

     akan dijelaskan makna informasi yang dikandungnya. 

          -r-xr-xr-x   1 denny    mhs        21428 Sep 24 10:11 /bin/ar

          |        |  | ||   |    | |        |   | |          ||      |

          |        |  | ||   |    | |        |   | |          ||      |

          +----+---+  +-++---+    +-+        +---+ +----------++------+

               |       |   |       |           |         |        |

               |       |   |       |           |         |        |

           mode file   | pemilik   |       besar file    |     nama file

                       |           |                     |

                       |           |                     |

                   banyaknya      group                tanggal

                     link                              modifikasi

                    Gambar 3.3 Informasi dari ls -l /bin/ar

          o Mode file atau mode perijinan file

            Kolom  pertama  menjelaskan mengenai  mode  perijinan 

            file.  Khusus  karakter pertama pada  mode  perijinan 

            file  tersebut  adalah   menunjukkan  jenis  filenya. 

            Karakter pertama '-' menunjukkan  bahwa file tersebut 

            adalah file biasa. Sedangkan karakter 'd' menunjukkan 

            bahwa  file tersebut adalah direktori. Disamping  itu 

            terdapat pula 'c' dan 'b' yang menunjukkan bahwa file 

            tersebut  adalah file khusus, 'c' untuk  file  khusus 

            jenis karakter dan 'b' untuk file khusus jenis  blok. 

            Karakter  ke  dua  hingga  ke  sepuluh  adalah   mode 

            perijinan file (dijelaskan kemudian)

          o Jumlah link

            Jumlah  link  pada file biasanya adalah  satu.  Untuk 

            file  biasa, jika jumlah link lebih dari  satu,  maka 

            hal  ini  menunjukkan  banyaknya  duplikat  file   di 

            direktori  lain.  Untuk direktori, jika  jumlah  link 

            lebih  dari satu, maka hal ini menunjukkan  banyaknya 

            sub direktori  di dalam direktori tersebut.

          o Nama pemilik

            Nama  pemilik  menunjukkan  nama  pemilik  file  atau 

            direktori.

          o Nama group

            Menunjukkan   nama  group  dari  pemilik  file   atau 

            direktori  tersebut. Hanya anggota group  yang  dapat 

            mengaksesnya.

          o Besar file

            Besar  file dinyatakan dalam byte. Untuk  file  teks, 

            besar  file sama dengan banyaknya karakter  di  dalam 

            file tersebut.

          o Tanggal dan waktu modifikasi

            Tanggal  dan waktu ini menampilkan tanggal dan  waktu 

            terakhir  file tersebut dimodifikasi. Format ini  ada 

            dua jenis, yaitu:

               - bulan tanggal jam:menit

               - bulan tanggal tahun

            Cara pertama otomatis digunakan oleh sistem jika file 

            tersebut  telah dimodifikasi kurang dari  satu  tahun 

            yang  lalu.  Sedangkan  cara ke  dua  digunakan  oleh 

            sistem jika file tersebut telah dimodifikasi  setahun 

            yang lalu atau lebih.

          o Nama file

            Nama dari file atau direktori yang bersangkutan.

     3.4 MENGUBAH DIREKTORI DENGAN cd

          Kita  telah  mengetahui  bahwa sistem  file  pada  UNIX 

     berbentuk  pohon,  untuk itu  sistem  menyediakan  fasilitas 

     untuk melakukan pemindahan dari satu direktori ke  direktori 

     lainnya,  yaitu  dengan  perintah  cd  dengan  diikuti  nama 

     direktori yang dituju. 

          cd namadirektori

          Dimana namadirektori adalah nama direktori yang dituju. 

     Perintah  cd adalah kependekan change directory.  Perhatikan 

     contoh berikut ini.

          $ pwd

          /

          $ cd /usr

          $ pwd

          /usr

          $ cd /usr/mhs

          $ pwd

          /usr/mhs

          $ cd denny

          /usr/mhs/denny

          $

          Dengan  perintah tersebut kita akan otomatis  masuk  ke 

     dalam direktori baru, tentunya direktori baru tersebut harus 

     memiliki  mode  perijinan  yang membolehkan  kita  masuk  ke 

     dalamnya.

          Jika  perintah cd tidak diikuti dengan  nama  direktori 

     yang  dituju  maka  arah direktori akan  ditujukan  ke  home 

     directory.

          $ who am i                 (siapa diri kita)

          denny      tty02        Oct 23 07:28

          $ pwd

          /tmp

          $ cd

          $ pwd

          /usr/mhs/denny             (kembali ke home directory) 

          $

          Kemudian  jika  kita ingin ke satu  direktori  di  atas 

     direktori  sekarang (direktori ayah) maka   dapat  dilakukan 

     perintah sebagai berikut:

          $ pwd

          /usr/mhs/denny

          $ cd ..

          $ pwd          

          /usr/mhs

          $ cd ..

          $ pwd

          /usr

          $

          Penggunaan  perintah cd cukup luwes,  seperti  luwesnya 

     kita  dalam menelusuri sebuah pohon. Kita dapat pindah  dari 

     satu   direktori   ke  direktori  lain   dengan   menelusuri 

     direktori-direktori   yang  menghubungkan  antar   direktori 

     tersebut. Untuk jelasnya, perhatikan diagram berikut ini.

                              /

                              |

                    +----+----+----...----+----...

                    |    |    |           |

                   bin  dev  etc ...     usr

                                          |

                                     +----+----+----...

                                     |         |

                                    mhs      staf

                                     |         |

                                +----+----+  +----+---- ...

                                |    |    |  |    |

                              denny ...  ... heru dono

                        Gambar 3.4 Menelusuri direktori 

          Jika   saat   ini  kita  berada  di   dalam   direktori 

     /usr/mhs/denny   dan   kita   ingin   masuk   ke   direktori 

     /usr/staf/heru,    maka   jika   diijinkan   oleh    pemilik 

     /usr/staf/heru kita dapat lakukan dengan cara merunut  balik 

     pohon tersebut mulai dari direktori /usr/mhs/denny hingga ke 

     direktori   dimana   direktori  tersebut   pernah   memiliki 

     direktori ayah yang sama. Pada kasus di atas mereka memiliki 

     direktori  ayah  yang sama pada /usr. Dengan  demikian  kita 

     harus  merunut balik dengan hingga direktori ayah /usr,  dan 

     kemudian dilanjutkan bergerak maju atau pindah ke  direktori 

     /usr/staf/heru.  Hal  ini dapat dinyatakan  dengan  perintah 

     UNIX sebagai berikut:

          $ pwd

          /usr/mhs/denny

          $ cd ..

          $ pwd

          /usr/mhs

          $ cd ..

          $ pwd

          /usr

          $ cd staf

          $ pwd

          /usr/staf

          $ cd heru

          $ pwd

          /usr/staf/heru

          $

          atau secara singkat:

          $ pwd

          /usr/mhs/denny

          $ cd ../../staf/heru

          $ pwd

          /usr/staf/heru

          $

     3.5 MELIHAT ISI FILE 

          Banyak  cara untuk melihat suatu file. Salah satu  cara 

     untuk  melihatnya  adalah dengan  menggunakan  perintah  cat 

     dengan diikuti nama file. Perintah cat hanya digunakan untuk 

     melihat   isi  file  teks  saja.  Jika  kita  perintah   cat  

     digunakan  untuk file non teks maka hasil  yang  ditampilkan 

     tak dapat dibaca.

          $ cat /etc/passwd

          root:hxI/hs24w48Qg:0:0:Super user:/:/bin/csh

          sysadm::0:0:System Administration:/usr/sysadm:/bin/sh

          shut::0:0:Shutdown Otomatis:/usr/shut:/bin/sh

          cron:NOLOGIN:1:1:Cron daemon for periodic tasks:/:

          bin::3:3:System file administration:/:

          uucp::4:4:Uucp :/usr/spool/uucppublic:/usr/lib/uucp/uucico

          asg:NOLOGIN:6:6:Assignable device administration:/:

          sysinfo:NOLOGIN:10:10:Access to system information:/:

          network:NOLOGIN:12:12:Mail and Network :/usr/spool/micnet:

          lp:NOLOGIN:14:3:Print spooler administration:/usr/spool/lp:

          dos:NOLOGIN:16:10:Access to Dos devices:/:

          chaerind:9zws8okDcPVIw:190:1087:geo:/tmp:/bin/sh

          denny:Zzw.8ofgcPVIw:3710:1087:denny yerianto:/usr/mhs/denny:/bin/sh

          ucrit:dsfinUcnsf2ck:3711:1087:ucrit :/usr/mhs/ucrit:/bin/csh

          jecky:Kawhju.ZQ4GOk:3713:51::/usr/jecky:/bin/ksh

          heru::3714:51::/usr/heru:/bin/sh

          $

          Nama  file yang mengikuti perintah cat dapat  berjumlah 

     lebih dari satu, dimana hasilnya akan ditampilkan berurutan. 

          $ cat satu

          satu satu

          satu dua

          $

          $ cat dua

          dua satu

          dua dua

          dua tiga

          $ cat satu dua

          satu satu

          satu dua

          dua satu

          dua dua

          dua tiga

          $

          Jika  kita berusaha memanggil nama file namun  ternyata 

     file tersebut tidak ada, maka perintah cat akan  menampilkan 

     pesan kesalahan sebagai berikut:

          $ cat tidakada

          cat: cannot open tidakada

          $

          Jika file yang kita buka terlalu besar, misalnya  lebih 

     dari satu layar terminal maka terjadi pelipatan teks,  yaitu 

     teks   akan  berputar  ke  atas.  Kita  dapat   menghentikan 

     sementara tampilan dilayar agar tidak melanjutkan  pelipatan 

     dengan    melakukan   penekanan   kontrol-S,    dan    untuk 

     melanjutkannya digunakan penekanan kontrol-Q. 

          Melihat  file teks yang berukuran besar dengan cara  di 

     atas  sangat  tidak  praktis,  untuk  itu  dapat   digunakan 

     perintah more.

          $ more filebesar

                    .

                    .

                    .

          atau

          $ cat filebesar | more

                    .

                    .

                    .

          Perintah   more  akan  menampilkan  teks  halaman   per 

     halaman.  Layar  akan berhenti setelah  teks  memenuhi  satu 

     halaman.  Bila pemakai mengetikan spasi, more    menampilkan 

     satu   halaman   layar   teks   berikutnya.   Bila   pemakai 

     mengetikkan carriage return, more akan menggerakkan layar ke 

     atas  satu baris dan menampilkan satu baris lagi pada  bawah 

     layar.  Bila pemakai mengetikan sebuah bilangan dan  diikuti 

     spasi, more akan menampilkan baris sebanyak nomor tersebut.

          Jika  more membaca data untuk ditampilkan  dari  sebuah 

     file  (bukan  menggunakan  pipa),  more    akan  menunjukkan 

     presentasi  dari file yang telah dibaca bersama prompt  pada 

     baris  bawah  layar. 

          More  menampilkan keluaran ke keluaran  standard.  Bila 

     sebuah  nama  file  tidak disebutkan,  more  akan  mengambil 

     masukan dari masukan standar.

          Disamping  more, cara lain yang dapat  digunakan  untuk 

     melihat isi file teks yang besar adalah menggunakan perintah 

     pg. Perintah ini akan menampilkan isi file ke layar terminal 

     halaman per halaman. 

          $ pg filebesar

               .

               .

               .

               .

          Perintah  pg  akan  menampilkan isi  file  halaman  per 

     halaman dimana satu halaman biasanya berjumlah 23 baris. 

          Pada  setiap  akhir baris dari layar  akan  ditampilkan 

     tanda  : sebagai prompt. Tekan enter atau spasi  jika  ingin 

     menampilkan  satu layar  penuh berikutnya. Jika  kita  ingin 

     mengakhiri  melihat  isi file tersebut padahal  belum  semua 

     isinya  ditampilkan, maka ketiklah huruf 'q' atau  'Q'  yang 

     diikuti enter.

          Tidak seperti cat, perintah pg memiliki sejumlah pilihan 

     untuk memperbaiki interaksi dengan pemakai yang lebih  baik. 

     Misalnya:

          $ pg -20 filebesar

               .

               .

               .

               .

          hal  ini  akan menampilkan 20 baris  setiap  halamannya 

     (satu  layar  penuh). Akibatnya, ketika  kita  berpindah  ke 

     halaman  berikutnya  maka tiga baris terakhir  dari  halaman 

     sebelumnya menjadi tiga baris awal pada halaman  berikutnya, 

     demikian seterusnya.

          Namun perintah dengan pilihan sebelumnya memiliki  arti 

     yang berbeda dengan pilihan berikut ini:

          $ pg +20 filebesar

               .

               .

               .

               .

          Perintah  pg di atas akan mengabaikan 19 baris  pertama 

     dan memulainya pada baris ke 20.

          Masih banyak pilihan dari perintah pg yang masih  belum 

     diuraikan pada buku ini. Untuk melihat pilihan apa saja yang 

     dimiliki oleh perintah pg, ketiklah 'h' pada prompt pg  yang 

     berbentuk :

          :h

          maka  akan  ditampilkan pilihan  yang  dapat  digunakan 

     dengan disertai penjelasan singkat.

     3.6 MENENTUKAN JENIS FILE DENGAN file

          Perintah  cat dan pg dapat digunakan dengan  baik  jika 

     file  yang ingin dilihat adalah file berjenis  teks.  Dengan 

     cara yang sudah kita pelajari, sulit untuk menentukan apakah 

     file tersebut berjenis teks atau non teks.

          UNIX  menyediakan  sebuah  fasilitas  untuk  menentukan 

     jenis suatu file, yaitu perintah file. Jenis-jenis file yang 

     dapat  ditentukan  antara lain ascii teks,  direktori,  yang 

     dapat  dieksekusi, teks program c. Perhatikan  contoh-contoh 

     berikut ini:

          $ file /bin/ls /usr /etc/passwd /usr/include/stdio.h

          /bin/ls:        pure executable

          /usr:           directory           

          /etc/passwd:    ascii text

          /usr/include/stdio.h:    c program text

          $

          Jika  file yang kita periksa ternyata tidak  ditemukan, 

     maka akan ditampilkan pesan kesalahan sebagai berikut:

          $ file takada

          takada: cannot open

          $

          Namun  jika  file  yang  akan  kita  periksa   ternyata 

     tidak  memberi ijin baca kepada kita, maka akan  ditampilkan 

     pesan kesalahan sebagai berikut:

          $ file dilarang

          dilarang: cannot open for reading

          $

     3.7 MENGCOPY FILE DENGAN cp

          Cara paling mudah untuk menduplikasi file adalah dengan 

     menggunakan  perintah  copy,  yaitu  cp.  Perhatikan  contoh 

     berikut ini.

          $ pwd

          /usr/mhs/denny

          $ cp /etc/motd coba

          $

          Argumen  pertama /etc/motd menunjukkan nama  file  asli 

     yang akan dicopy, sedangkan argumen ke dua coba  menunjukkan 

     nama  baru dari file hasil copy. 

          Jika  argumen  ke  dua adalah titik,  maka  hasil  copy 

     diletakkan  pada  direktori  yang  sedang  digunakan  dengan 

     menggunakan nama yang sama dengan aslinya. Perhatikan contoh 

     berikut:

          $ ls

          coba

          $ cp /etc/motd .

          $ ls

          coba

          motd                     (nama hasil copy = nama asli)

          $

          Jika argumen terakhir berupa direktori, maka hasil copy 

     file  tersebut akan dimasukkan ke dalam  direktori  tersebut 

     dengan menggunakan nama yang sama dengan aslinya.

          $ cp /etc/passwd /usr/mhs/denny (ke direktori)

          $ ls  /usr/mhs/denny            (lihat isinya)

          coba

          motd

          passwd                              (hasil copy baru)

          $

          Kita  dapat juga melakukan pengcopyan lebih  dari  satu 

     file ke dalam satu direktori. Argumen-argumen pada  perintah 

     cp merupakan nama-nama file yang akan dikopi kecuali argumen 

     terakhir yang menunujkkan nama direktori tujuan.

          $ ls

          coba

          motd

          passwd

          $ cp coba motd passwd /usr/tmp

          $

          Jika nama file dari hasil copy sudah ada pada direktori 

     yang dituju, pada beberapa sistem tidak akan  memberitahukan 

     kepada kita. Akibatnya file lama akan ditimpa, kecuali  jika 

     file  lama  tersebut tidak memberi ijin tulis kepada kita.

          Jika  file yang akan kita copy ternyata  tidak  memberi 

     ijin  baca bagi kita maka proses pengkopian akan  digagalkan 

     dan ditampilkan pesan sebagai berikut:

          $ ls -l /tmp

          -rwx------   1 root     root        2123 Dec 24 1989 no_baca

          $ cp /tmp/no_baca pesan

          cp: cannot open /tmp/nobaca

          $

          Namun jika file yang akan kita copy ternyata tidak ada, 

     maka akan ditampilkan pesan yang berbeda sebagai berikut:

          $ cp /tmp/takada pesan

          cp: cannot access /tmp/takada      (file tidak ada)

          $

          Selanjutnya   jika  kita  mencoba  untuk  mengcopy   ke 

     direktori  yang  tidak ada atau dilarang menulis  maka  akan 

     ditampilkan pesan sebagai berikut:

          $ cp /etc/motd /usr/mhs/takada/takbisa

          cp: cannot create /usr/mhs/takada/takbisa

          $

     3.8 MEMINDAHKAN ATAU MENGGANTI NAMA FILE DENGAN mv

          Tidak  seperti  pada perintah cp  dimana  file  aslinya 

     tidak  diubah, perintah mv akan menghapus file  aslinya  dan 

     memindahkan  ke tempat yang baru. Perhatikan contoh  berikut 

     ini.

          $ pwd

          /usr/mhs/denny

          $ ls  

          coba

          motd

          passwd

          $ ls  /tmp

          no_baca

          $ mv coba /tmp

          $ ls                     (lihat isi /usr/mhs/denny)

          motd                     ('coba' otomatis dihapus)

          passwd

          $ ls /tmp

          coba                     ('coba' dipindahkan!)

          no_baca

          $

          Seperti  pada  perintah  cp,  perintah  mv  juga  dapat 

     memindahkan  beberapa  nama  file  sekaligus  ke   direktori 

     tertentu.  Seluruh  argumen merupakan nama  file  yang  akan 

     dipindahkan  kecuali  argumen terakhir yang  merupakan  nama 

     direktori tujuan.

          $ mv motd passwd /tmp

          $ ls                     (sudah kosong!)

          $ ls /tmp

          coba                     (semua telah dipindah)

          motd

          no_baca

          passwd

          $

          Jika pada nama file baru sudah ada pada direktori  yang 

     dituju,  file lama akan langsung ditimpa. Sehubungan  dengan 

     hal ini, maka perintah ini sering digunakan untuk  mengganti 

     nama file.

          $ ls

          coba                     

          motd

          no_baca

          passwd

          $

          $ mv coba cobacoba

          $ ls 

          cobacoba                 (coba diganti cobacoba)

          motd

          no_baca

          passwd

          $

          Namun jika file yang akan kita pindahkan tidak  memberi 

     ijin tulis maka sistem akan melakukan konfirmasi kepada kita 

     terlebih dahulu.

          $ pwd

          /tmp

          $ ls -l cobacoba

          -r--r--r--   1 denny    denny        189 Dec 24 1989 cobacoba

          $ mv /usr/tmp/coba cobacoba

          cobacoba: mode 444 ?

          n                                  (tidak setuju!)

          $

          Jika   tidak  setuju  atau  jawaban  'n'  maka   proses 

     pemindahan  file akan dibatalkan. Jika setuju  atau  jawaban 

     'y' maka proses pemindahan dilaksanakan.

     3.9 MENGHAPUS FILE DENGAN rm

          Perintah  untuk menghapus file adalah perintah rm  yang 

     diikuti nama file yang akan dihapus. Setiap saat,  file-file 

     yang  akan dihapus dapat lebih dari satu. Perhatikan  contoh 

     berikut ini.

          $ ls

          cobacoba                 

          motd

          no_baca

          passwd

          $ rm motd

          $ ls 

          cobacoba

          no_baca

          passwd

          $

          Jika  file yang akan dihapus tidak memberi  ijin  tulis 

     kepada  kita, maka sistem akan melakukan  konfirmasi  kepada 

     kita  terlebih  dahulu sebelum dilakukan  penghapusan.  Jika 

     disetujui  maka  proses penghapusan  dilaksanakan  dan  jika 

     tidak maka proses penghapusan dibatalkan.

          $ ls -l cobacoba

          -r--r--r--   1 denny    denny        189 Dec 24 1989 cobacoba

          $ rm cobacoba

          cobacoba: mode 444 ?

          n                                  (tidak setuju!)

          $

          $ ls 

          cobacoba                           (masih awet !)

          no_baca

          passwd

          $

          Perlu  diingat  adalah bahwa file  yang  telah  dihapus 

     tidak dapat dibatalkan atau dikembalikan dengan  menggunakan 

     fasilitas  yang ada di dalam UNIX (bandingkan dengan  sistem 

     operasi DOS yang dapat membatalkan penghapusan file).  Untuk 

     itu maka sebaiknya setiap penghapusan selalu melalui  proses 

     konfirmasi   terlebih   dahulu.   Caranya   adalah    dengan 

     menggunakan pilihan -i (interactive).

          $ ls -l passwd

          -rwxrwxrwx   1 denny    denny        189 Dec 24 1989 cobacoba

          $ rm passwd

          passwd: n                                 (tidak setuju)

          $ ls passwd

          passwd

          $ rm passwd

          passwd: y                                 (setuju!)

          $ ls passwd         

          $                                         (terhapus ..)

          Kebalikan  dari pilihan -i, yaitu dimana  akan  memaksa 

     agar   proses  tidak  melakukan  konfirmasi  adalah   dengan 

     menggunakan  pilihan -f. Perintah ini dapat  digunakan  pada 

     penghapusan dimana file yang akan dihapus tidak memberi ijin 

     tulis kepada kita.

          $ ls -l cobacoba

          -r--r--r--   1 denny    denny        189 Dec 24 1989 cobacoba

          $ rm cobacoba

          cobacoba: mode 444 ?

          n                                  (tidak setuju!)

          $ rm -f cobacoba

          $ ls cobacoba                      (cobacoba terhapus)

          $

          Jika file yang akan kita hapus ternyata tidak ada, maka 

     sistem akan menampilkan pesan sebagai berikut:

          $ rm takada

          rm: takada non-existent

          $

     3.10 MEMBUAT DIREKTORI 

          Direktori  merupakan kumpulan dari file-file  dan  atau 

     direktori.   Direktori  di  dalam  direktori   disebut   sub 

     direktori.  Pada akhirnya, sistem direktori  UNIX  membentuk 

     pohon. (lihat gambar 3.1)

          Direktori    membutuhkan   sedikit   pengaturan    atau 

     pengelolaan agar dapat dimanfaatkan secara optimal, misalnya 

     kita  sebaiknya  mengumpulkan  file-file  sejenis  ke  dalam 

     sebuah direktori. 

          Perintah  yang digunakan untuk membuat  direktori  baru 

     adalah  mkdir yang diikuti nama direktori yang akan  dibuat. 

     Direktori  yang  dibuat dapat lebih dari satu.  Berikut  ini 

     contoh  membuat beberapa direktori baru di  bawah  direktori 

     /usr/mhs/denny seperti pada  gambar 3.5.

                              /

                              |

                  ..+----+----+----...----+----...

                    |    |    |           |

                   bin  dev  etc ...     usr

                                          |

                        ..+----------+----+----+----...

                          |          |         |

                         bin        mhs      staf

                         ...         |         |

                            ... +----+----+  +----+---- ...

                                |    |    |  |    |

                              denny ...  ... heru dono

                                |             .   .

                         +------+------+

                         |             |

                        doc         program

                         |             |

                    +----+----+   +----+----+

                    |    |    |   |         |

                  data memo surat c       pascal

                       Gambar 3.5 Membuat direktori baru

          $ cd                 (ke home direktori /usr/mhs/denny)

          $ mkdir doc program 

          $ cd program

          $ mkdir c pascal

          $ ls -l

          total 2

          drwxrwxrwx   2 denny    mhs           32 Apr 22 10:22 c

          drwxrwxrwx   2 denny    mhs           32 Apr 22 10:22 pascal

          $

          Selanjutnya kita akan membuat direktori-direktori  baru 

     dibawah direktori doc sebagai berikut:

          $ pwd

          /usr/mhs/denny/program

          $ cd ../doc

          $ mkdir data memo surat

          $ ls -l

          total 3

          drwxrwxrwx   2 denny    mhs           32 Apr 22 10:22 data

          drwxrwxrwx   2 denny    mhs           32 Apr 22 10:22 memo

          drwxrwxrwx   2 denny    mhs           32 Apr 22 10:22 surat

          $ cd                          (kembali ke home directory)

          $

          Cara  di  atas  dapat juga  dilaksanakan  dalam  sebuah 

     perintah baris sebagai berikut:

          $ pwd

          /usr/mhs/denny

          $ mkdir program program/c program/pascal doc doc/data doc/memo \

            doc/surat

          $ ls -l

          total 2

          drwxrwxrwx   5 denny    mhs           80 Apr 22 10:22 doc

          drwxrwxrwx   4 denny    mhs           64 Apr 22 10:22 program

          $

          Dengan   bantuan   karakter   garis   miring   terbalik 

     (backslash)  sebelum  menekan  enter  (karakter     carriage 

     return)  akan  mengakibatkan karakter  carriage  return  tak 

     diterjemahkan  oleh  shell  sehingga  kedua  baris  perintah 

     tersebut dianggap sebagai satu perintah.

          Urutan  nama  direktori  baru yang  akan  dibuat  harus 

     berurutan   yaitu  diawali  dengan   direktori   ayah   lalu 

     dilanjutkan dengan direktori anaknya atau sub  direktorinya. 

     Perhatikan  apa  yang  terjadi jika  yang  dibuat  direktori 

     anaknya terlebih dahulu.

          $ mkdir program/pascal program

          mkdir: cannot acces program/.

          $

          Direktori  ayahnya  harus ada terlebih  dahulu  sebelum 

     direktori anaknya dibuat.

          Jika  direktori telah dibuat, maka sistem akan  menolak 

     pembuatan  direktori  baru  dan  menampilkan  pesan  sebagai 

     berikut:

          $ mkdir /usr/mhs/denny

          mkdir: cannot make directory /usr/mhs/denny

          $

          Sampai  disini  kita telah membuat  beberapa  direktori 

     baru.  Untuk melihat isi seluruh direktori yang  telah  kita 

     buat adalah sebagai berikut:

          $ pwd

          /usr/mhs/denny

          $ ls -l doc program

          doc:

          total 3

          drwxrwxrwx   2 denny    mhs           32 Apr 22 10:22 data

          drwxrwxrwx   2 denny    mhs           32 Apr 22 10:22 memo

          drwxrwxrwx   2 denny    mhs           32 Apr 22 10:22 surat

          program:

          total 2

          drwxrwxrwx   2 denny    mhs           32 Apr 22 10:22 c

          drwxrwxrwx   2 denny    mhs           32 Apr 22 10:22 pascal

          $

          Cara lain yang lebih praktis untuk melihat seluruh  isi 

     direktori yang ada adalah dengan menggunakan perintah ls dan 

     pilihan  -R.  Pilihan  ini akan  menampilkan  isi  direktori 

     secara rekursif.

          $ pwd 

          /usr/mhs/denny

          $ ls -lR

          total 2

          drwxrwxrwx   5 denny    mhs           80 Apr 22 10:22 doc

          drwxrwxrwx   4 denny    mhs           64 Apr 22 10:22 program

          doc:

          total 3

          drwxrwxrwx   2 denny    mhs           32 Apr 22 10:22 data

          drwxrwxrwx   2 denny    mhs           32 Apr 22 10:22 memo

          drwxrwxrwx   2 denny    mhs           32 Apr 22 10:22 surat

          program:

          total 2

          drwxrwxrwx   2 denny    mhs           32 Apr 22 10:22 c

          drwxrwxrwx   2 denny    mhs           32 Apr 22 10:22 pascal

          doc/data:

          total 0

          doc/memo:

          total 0

          doc/surat:

          total 0

          program/c:

          total 0

          program/pascal:

          total 0

          $

     3.11 MENGHAPUS DIREKTORI

          Perintah untuk menghapus direktori adalah rmdir  dengan 

     diikuti  nama-nama  direktori yang akan  dihapus.  Direktori 

     yang  akan dihapus dapat lebih dari satu. Sebelum  direktori 

     tersebut  dihapus,  harus dipastikan terlebih  dahulu  bahwa 

     sudah  tidak  ada file atau direktori di dalamnya.  Jika  di 

     dalam  direktori masih ada file atau direktori  maka  proses 

     penghapusan  akan dibatalkan dan ditampilkan  pesan  sebagai 

     berikut:

          $ rmdir program

          rmdir: program not empty

          $

          Penghapusan  di  atas gagal karena di  dalam  direktori 

     program  masih terdapat direktori lain, yaitu program/c  dan 

     program/pascal.  Untuk  itu maka  kedua  direktori  tersebut 

     harus dihapus terlebih dahulu.

          $ rmdir program/c program/pascal program

          $

          Cara  lain  yang  dapat  kita  gunakan  adalah   dengan 

     menggunakan perintah rm dengan pilihan -r. Pilihan ini  akan 

     menghapus  file  dan direktori secara  rekursif  mulai  dari 

     direktori  anak  yang paling bawah sampai  dengan  direktori 

     yang disebutkan.

          $ rm -r doc

          $ ls                (direktori doc & anaknya dihapus)

          $

          Selanjutnya jika direktori yang dihapus tidak ada  maka 

     sistem UNIX akan menampilkan pesan sebagai berikut:

          $ rmdir takada

          rmdir: takada non-existent

          $

     3.12 SUBSTITUSI NAMA FILE

     3.12.1 Pencocokan Seluruh Untaian Karakter

          Karakter  asteriks atau '*' akan cocok  dengan  untaian 

     karakter  atau  string apa saja. Sebelum  diterangkan  lebih 

     lanjut,  marilah  kita lihat direktori yang  akan  dijadikan 

     contoh.

          $ ls

          bab1

          bab2

          bab3

          bab4

          $

          Seandainya   kita  akan  melihat  isi  dari   file-file 

     tersebut  secara keselurahan, maka kita  dapat  melakukannya 

     dengan perintah cat sebagai berikut:

          $ cat bab1 bab2 bab3 bab4

               ....          (ditampilkan file isi bab1 s/d bab4)

          $

          Selain   dengan   cara  tersebut,   kita   juga   dapat 

     menuliskannya sebagai berikut:

          $ cat *

               ....          (ditampilkan isi file bab1 s/d bab4)

          $

          Ke  dua cara di atas akan mendapatkan hasil yang  sama. 

     Shell otomatis akan mensubstitusikan  nama dari seluruh file 

     pada  current direktory untuk *. Substitusi yang sama  dapat 

     pula dilakukan pada perintah echo:

          $ echo *

          bab1 bab2 bab3 bab4

          $ echo bab*

          bab1 bab2 bab3 bab4

          $

          Disini karakter '*' digantikan dengan nama dari seluruh 

     file yang ada pada current directory dan perintah echo  akan 

     menampilkannya   pada  terminal.  Namun  perhatikan   contoh 

     berikut ini:

          $ echo *ab2

          bab2

          $ echo *b*

          bab1 bab2 bab3 bab4

          $ echo *x

          *x

          $

          Pada   dua   contoh  di  atas   memperlihatkan   betapa 

     fleksibelnya karakter '*' dalam mensubtitusi nama file. Pada 

     contoh terakhir memperlihatkan bahwa karakter '*' dapat pula 

     diartikan sebagai karakter '*' dan bukan pensubstitusi  nama 

     file. Hal ini dikarenakan file yang ada huruf 'x' nya  tidak 

     ada.

     3.12.2 Pencocokan Setiap Karakter Tunggal

          Disamping  pencocokan global dengan karakter  asterisk, 

     kita   dapat   pula  melakukan  pencocokan   spesifik   satu 

     karakter, yaitu dengan karakter tanda tanya '?'.  Perhatikan 

     isi direktori yang akan digunakan contoh.

          $ ls

          a

          aa

          aax

          aku

          b

          bb

          c

          cc

          report1

          report2

          report3

          $ echo ?

          a b c

          $ echo a?

          aa

          $ echo ??

          aa bb cc

          $ echo ??*

          aa aax aku bb cc report1 report2 report3

          $

          Cara  lain adalah menggunakan tanda kurung  siku  '[]'. 

     Cara   ini  akan  menyeleksi  file  berdasarkan   apa   yang 

     disyaratkan dalam kurung siku tersebut.

          $ ls [a-b]*

          a

          aa

          aax

          aku

          b

          bb

          c

          cc

          $

          Maksud perintah di atas adalah menampilkan daftar  file 

     dari current directory dengan syarat huruf awalnya adalah  a 

     sampai  dengan  c. Contoh lain  misalnya  anda  menginginkan  

     jangkauan angka seperti:

          $ ls 

          bab1

          bab2

          bab3

          bab4

          bab5

          $ ls bab[1-2]

          bab1

          bab2

          $

          Tanda seru '!' dapat digunakan sebagai penginvert  atau 

     penyebalik  arti.  misalnya [!a-z]  adalah  cocokkan  dengan 

     karakter  yang bukan a sampai dengan  z (huruf kecil).  Jadi 

     bisa saja A s/d Z atau 0 s/d 9.

          $ ls 

          bab1

          bab2

          bab3

          bab4

          bab5

          $ ls bab[!1-2]

          bab3

          bab4

          bab5

          $

     3.13 PERIJINAN DAN PROTEKSI 

     3.13.1 Konsep Perijinan dan Proteksi

          Untuk pengaturan akses bagi file dan direktori,  setiap 

     file dan direktori sistem UNIX memiliki  tiga jenis  pemakai 

     yaitu:

          o Pemilik (owner)

            Pemilik  adalah pemakai yang memiliki file  tersebut, 

            biasanya  orang  yang pertama kali  menciptakan  file 

            tersebut. Untuk mengubah kepemilikan file tersebut ke 

            pemakai lainnya, dapat digunakan perintah chown.

          o Group (group)

            Beberapa pemakai dapat di kelompokkan ke dalam sebuah 

            group. File atau direktori yang mempunyai kepemilikan 

            ini  mengakibatkan  hanya pemakai anggota group  yang 

            dapat mengakses.

          o Orang lain (others)

            Seluruh  pemakai  sistem adalah termasuk  jenis  ini. 

            File  atau direktori yang mempunyai  kepemilikan  ini 

            mengakibatkan semua orang dapat mengaksesnya.

          Masing-masing  dapat  memiliki  mode  perijinan   akses 

     terhadap file atau direktori sebagai berikut:

          o Ijin baca (r)

            Pemakai yang memiliki ijin baca terhadap sebuah  file 

            dapat melihat isi dari file tersebut.

            Pemakai  yang  memiliki  ijin  baca  terhadap  sebuah 

            direktori dapat melihat isi file apa saja yang berada 

            di dalam  direktori tersebut. Namun untuk melihat isi 

            file  dari direktori dengan informasi detail (ls  -l) 

            harus diperlukan ijin eksekusi bagi pemakai  terhadap 

            direktori  tersebut. Namun demikian, untuk    melihat 

            isi  file dari file yang terdapat di dalam  direktori 

            tersebut, pemakai harus memiliki ijin baca dari  file 

            yang bersangkutan.

          o Ijin tulis (w) 

            Pemakai yang memiliki ijin tulis terhadap sebuah file 

            dapat mengubah isi file tersebut

            Pemakai  yang  memiliki ijin  tulis  terhadap  sebuah 

            direktori  dapat  mengubah  isi  direktori,  sehingga 

            pemakai dapat membuat file baru atau menghapus  file-

            file.  Namun demikian untuk mengubah  file-file  yang 

            terdapat  di dalam direktori tersebut, pemakai  harus 

            memiliki ijin tulis dari file yang bersangkutan.

          o Ijin eksekusi (x) 

            Pemakai  yang memiliki ijin eksekusi terhadap  sebuah 

            file dapat mengeksekusi file tersebut.

            Pemakai  yang memiliki ijin eksekusi terhadap  sebuah 

            direktori  dapat  mengubah  direktori  tersebut   dan 

            melakukan   pengkopian   file-file   dari   direktori 

            tersebut. 

          Dengan  kombinasi  tiga jenis mode  perijinan  terhadap  

     tiga  jenis  pemakai,  kita  dapat  memiliki  sembilan   set 

     perijinan  yang dapat memproteksi file atau  direktori  yang 

     kita miliki.

          - ijin baca bagi pemilik

          - ijin tulis bagi pemilik

          - ijin eksekusi bagi pemilik

          - ijin baca bagi group

          - ijin tulis bagi group

          - ijin eksekusi bagi group

          - ijin baca bagi orang lain

          - ijin tulis bagi orang lain

          - ijin eksekusi bagi orang lain

          Kesembilan  mode  perijinan tersebut  biasanya  ditulis 

     sebagai berikut:

          rwxrwxrwx

          - tiga huruf pertama menunjukkan ijin bagi pemilik

          - tiga huruf kedua menunjukkan ijin bagi group

          - tiga huruf ketiga menunjukkan ijin bagi orang lain

          Untuk  melihat  mode  perijinan  file  dan   direktori, 

     gunakan perintah ls -l.

          $ ls -l 

          total 6

          drwxr-xr-x   2 guest    guest       1216 Nov 25 10:42 asli

          -rwx------   1 root     root         290 May 16 10:11 coba

          drwxr-xr-x   2 root     root          32 Apr 10 19:41 lib

          $

          Kolom  pertama  pada  baris  ke  dua  dan  selanjutnya, 

     menyatakan  mode perijinannya. Khusus karakter pertama  pada 

     mode perijinan tersebut menunjukkan jenis filenya.  Karakter 

     pertama  '-'  menunjukkan  bahwa file tersebut  adalah  file 

     biasa.  Sedangkan karakter 'd' menunjukkan bahwa jenis  file 

     tersebut  adalah direktori. Disamping itu terdapat pula  'c' 

     dan  'b' yang menunjukkan bahwa jenis file  tersebut  adalah 

     file  khusus, 'c' untuk file khusus jenis karakter  dan  'b' 

     untuk file khusus jenis blok. 

          Karakter  selanjutnya  dari mode  perijinan  menyatakan 

     mode perijinan sesungguhnya seperti yang diuraikan di atas. 

          Untuk melakukan proteksi terhadap file atau  direktori, 

     gantilah perijinan rwx dengan '-'. Perhatikan contoh berikut 

     yang menyatakan mode file read-only

          -r--r--r--

          File  yang  memiliki mode seperti  diatas  hanya  dapat 

     dibaca  oleh  pemilik,  group  atau  orang  lain.  File  ini 

     diproteksi terhadap upaya penulisan atau pengeksekusian oleh 

     pemakai.

          Dengan  adanya  mode perijinan ini berarti  kita  dapat 

     melindungi file dan direktori kita dari gangguan orang  yang 

     tidak kita hendaki. Contoh:

          -rwx------

          File yang memiliki proteksi seperti di atas tidak dapat 

     dibaca,  ditulis  dan  dieksekusi oleh  orang  lain  kecuali 

     pemiliknya sendiri.

          Namun  harus  diingat bahwa proteksi  ini  semua  tidak 

     berlaku  bagi  root atau superuser.  Mereka  dapat  menembus 

     proteksi karena mereka penguasa dan pengatur sistem.

     3.13.2 Mengubah Perijinan dengan chmod

          Perintah chmod dapat mengubah mode perijinan file  atau 

     direktori.  Mode perijinan tersebut dapat diubah hanya  oleh 

     pemiliknya sendiri atau oleh superuser. Format umum perintah 

     chmod adalah:

               chmod modefile file

          Untuk mengubah mode perijinan, perintah chmod  memiliki 

     dua cara representasi bagi argumen modefile yaitu:

          - nilai absolut berupa bilangan oktal

          - mode simbolik

          Pengubahan mode perijinan file dengan menggunakan nilai 

     absolut  mengharuskan  pemakai  mengenal  bilangan   binary. 

     Perhatikan tabel binary berikut ini.

          --------------------

          Binary       Oktal

          --------------------

          000            0

          001            1

          010            2

          011            3

          100            4

          101            5

          110            6

          111            7

          --------------------

          Tabel 3.1 Binary-Oktal

          Setiap pemberian satu ijin dari sembilan perijinan yang 

     digunakan  akan  dinyatakan dengan bilangan  satu  dan  jika 

     tidak  diijinkan akan dinyatakan dengan bilangan  nol.  Dari 

     bilangan binary ini dapat dinyatakan sebagai bilangan  oktal 

     bagi pemakai yaitu pemilik, group dan orang lain. Perhatikan 

     contoh berikut ini.

          rw-r--r--           mode perijinan file

          110100100           bilangan binary

          | || || |

          | || || |

           v  v  v

           |  |  |

           6  4  4            bilangan oktal

                      Gambar 3.6 Perijinan

          Teknik  lain untuk mempermudah menemukan bilangan  bagi 

     mode  perijinan dengan cara ini adalah  menggunakan  diagram 

     berikut ini:

                    pemilik  group  orang lain

                    r w x     r w x     r w x

                    | | |     | | |     | | |

          400 ------+ | |     | | |     | | |

          200 --------+ |     | | |     | | |

          100 ----------+     | | |     | | |

                              | | |     | | |

           40 ----------------+ | |     | | |

           20 ------------------+ |     | | |

           10 --------------------+     | | |

                                        | | |

            4 --------------------------+ | |

            2 ----------------------------+ |

            1 ------------------------------+

          Gambar 3.7 Diagram Translasi Mode Perijinan

          Dengan   demikian  untuk  perijinan   rw-r--r--   dapat 

     dinyatakan sebagai berikut:

               400

               200

                40

                 4

               ---

               644

          Selanjutnya,  penggunaan dari perintah chmod   tersebut 

     adalah sebagai berikut:

          $ chmod 644 bab1 bab2 bab3

          $ ls -l bab1 bab2 bab3

          -rw-r--r--   1 denny    mhs          280 Apr 22 10:22 bab1

          -rw-r--r--   1 denny    mhs          164 Apr 22 10:22 bab2

          -rw-r--r--   1 denny    mhs          380 Apr 22 10:22 bab3

          $

          Jika kita mencoba mengubah mode perijinan file dan file 

     tersebut  ternyata  tidak ada maka  akan  ditampilkan  pesan 

     sebagai berikut:

          $ chmod 777 takada

          chmod: can't access takada

          $

          Jika kita mencoba mengubah mode perijinan file dan file 

     tersebut  bukan  milik  kita  maka  akan  ditampilkan  pesan 

     sebagai berikut:

          $ chmod 777 /etc/passwd

          chmod: can't change /etc/passwd

          $

          Kesalahan  lain yang sering terjadi adalah  tertukarnya 

     letak argumen dari perintah chmod. Jika hal ini terjadi maka 

     akan ditampilkan pesan sebagai berikut:

          $ chmod bab1 777

          chmod: invalid mode

          $

          Cara  kedua dengan menggunakan mode  simbolik.  Pilihan 

     mode simbolik yang dapat digunakan antara lain:

          -----------------------------------------

          Simbol         Arti

          -----------------------------------------

          u              ijin bagi pemilik

          g              ijin bagi group

          o              ijin bagi orang lain

          a              ijin bagi semua pemakai

          =              pasang nilai perijinannya

          +              memberi perijinan

          -              hapus perijinan

          -----------------------------------------

                   Tabel 3.2 Mode simbolik

          Jenis  perijinannya  adalah  baca 'r',  tulis  'w'  dan 

     eksekusi 'x'.

          Hal  yang harus diingat adalah bahwa  argumen  modefile 

     pada  perintah chmod harus merupakan satu kesatuan  argumen. 

     Artinya  jika  diinginkan  lebih dari  satu  perubahan  mode 

     perijinan,  maka antara satu modefile dengan  lainnya  harus 

     dipisahkan  dengan  koma dan  tidak  dibolehkan  menggunakan 

     spasi. Perhatikan contoh berikut:

          $ ls -l

          total 3

          -r--------   1 denny    mhs          280 Apr 22 10:22 bab1

          -r--------   1 denny    mhs          164 Apr 22 10:22 bab2

          -r--------   1 denny    mhs          380 Apr 22 10:22 bab3

          $ chmod u=rw,go=r bab1 bab2 bab3

          -rw-r--r--   1 denny    mhs          280 Apr 22 10:22 bab1

          -rw-r--r--   1 denny    mhs          164 Apr 22 10:22 bab2

          -rw-r--r--   1 denny    mhs          380 Apr 22 10:22 bab3

          $

          Mode  simbolik  pertama mengalokasikan  ijin  baca  dan 

     tulis   bagi   pemilik   file   tersebut.   Mode    simbolik 

     kedua  mengalokasikan ijin baca group dan orang  lain.  Cara 

     berikut  akan  menghasilkan mode yang  sama  dengan  operasi 

     chmod sebelumnya.

          $ chmod a=r,u+w bab1 bab2 bab3

          $

          Jika  mode perijinan file ternyata dapat dibaca,  dapat 

     ditulis  dan  dapat dieksekusi oleh  semua  pemakai  sebagai 

     berikut:

          $ ls -l

          total 3

          -rwxrwxrwx   1 denny    mhs          280 Apr 22 10:22 bab1

          -rwxrwxrwx   1 denny    mhs          164 Apr 22 10:22 bab2

          -rwxrwxrwx   1 denny    mhs          380 Apr 22 10:22 bab3

          $ 

           maka  kita  dapat  menghapus  perijinannya,   misalnya 

     menghapus ijin tulis bagi semua pemakai.

          $ chmod a-w bab1 bab2 bab3

          $ ls -l

          total 3

          -r-xr-xr-x   1 denny    mhs          280 Apr 22 10:22 bab1

          -r-xr-xr-x   1 denny    mhs          164 Apr 22 10:22 bab2

          -r-xr-xr-x   1 denny    mhs          380 Apr 22 10:22 bab3

          $

          Untuk  mendapatkan  hasil seperti di atas,  kita  dapat 

     pula tidak menyebutkan mode simbolik a seperti di atas

          $ chmod -w  bab1 bab2 bab3

          $

          Mode  perijinan  yang  digunakan di  atas  adalah  mode 

     perijinan yang biasa dilakukan oleh pemakai biasa. Masih ada 

     beberapa mode perijinan lainnya yang pada umumnya  digunakan 

     oleh administrator sistem atau superuser.

     3.13.3 Mode Perijinan Awal

          Mode   perijinan  awal  adalah  mode   perijinan   yang 

     diberikan pada file atau direktori yang baru diciptakan atau 

     dibuat.  Mode  perijinan awal ini dikontrol  oleh  apa  yang 

     disebut  user mask dan disingkat umask. Kita  dapat  melihat 

     nilai standar mode perijinan awal dengan memanggil  perintah 

     umask tanpa diikuti argumen apapun.

          $ umask

          0000

          $

          Artinya  bahwa ketika file pertama kali  dibuat,  nilai 

     standar   mode  perijinannya  adalah  rw-rw-rw-  atau   666, 

     sedangkan  bagi direktori, nilai standar  mode  perijinannya 

     adalah rwxrwxrwx atau 777. Nilai ini merupakan nilai standar 

     yang diberikan oleh sistem. Nilai standar mode perijinan ini 

     dapat  diubah dengan menggunakan perintah umask dan  diikuti 

     argumen.  Nilai  dari  argumen dapat  dihitung  dengan  cara 

     mengurangkan  nilai standar awal mode perijinan dengan  mode 

     perijinan yang diinginkan. Misalnya kita ingin nilai standar 

     mode perijinan awal yang baru adalah rw-r--r-- atau 644.

          666       (nilai standar mode perijinan awal)

          644       (nilai standar mode perijinan yang diinginkan)

          --- -

          022       (nilai umask baru)

          Dengan demikian kita dapat mengubah nilai standar  mode 

     perijinan awal dengan cara:

          $ umask 022

          $

          Sekarang  file-file  yang  baru  dibuat  akan  otomatis 

     memiliki  mode perijinan awal rw-r--r--. Sementara itu  mode 

     perijinan  awal direktori akan otomatis bernilai  rwxr-xr-x. 

     Nilai  ini  didapat  dari mengurangkan  nilai  standar  mode 

     perijinan awal dengan nilai umask  saat itu.

          777       (nilai default mode perijinan awal)

          022       (nilai umask)

          --- -

          755       (nilai default mode perijinan awal baru)

          Dengan   demikian  harus  diatur  sedemikian   sehingga 

     terdapat  kesesuaian  seperti yang  diharapkan  antara  mode 

     perijinan awal bagi file dan direktori. 

BAB 4

P R O S E S

          Yang  dimaksud dengan proses pada UNIX  adalah  program 

     yang  sedang  berjalan  di  dalam  sistem,  misalnya  shell, 

     utilitas,  atau aplikasi lainnya. Masukan dari proses  dapat 

     berasal dari keyboard, file atau program lain. Keluaran dari 

     proses  dapat  ditampilkan  ke  layar  terminal,  file  atau 

     program  lain. Sebagian besar utilitas UNIX dirancang  untuk 

     bekerja dalam kombinasi masukan dan keluaran seperti ini.

          Pada  bab  ini akan dijelaskan tentang  konsep  proses, 

     hubungan antar proses dan fasilitas yang berhubungan  dengan 

     proses  di  dalam   sistem UNIX.  Pembahasan  akan  mencakup 

     mengenai:

          - proses masukan dan keluaran

          - pengalihan masukan dan keluaran 

          - pipa dan hubungannya dengan masukan dan keluaran

          - proses latar depan dan latar belakang

          - menghentikan proses

          - menjadualkan proses

     4.1 PROSES MASUKAN DAN KELUARAN

          Sebuah  program yang dijalankan di dalam  sistem  UNIX

     biasanya  akan  membutuh  beberapa  masukan.  Disamping  itu 

     pula program biasanya menghasilkan suatu keluaran, baik  itu 

     keluaran   hasil  maupun  keluaran   kesalahan.   Keperluan-

     keperluan tersebut ditangani oleh UNIX dengan menggunakan:

          o Masukan standar

            masukan  standar merupakan sumber data  dari  program 

            dan  sistem akan memberikan datanya pada saat  proses 

            berjalan. Default masukan standar bagi program adalah 

            keyboard  terminal.  Bilangan deskriptor  file  untuk 

            masukan standar adalah 0.

          o Keluaran standar

            keluaran standar merupakan wadah dimana program dapat 

            menuliskan  hasil  eksekusi  yang  telah  dijalankan. 

            Default  keluaran standar bagi program  adalah  layar 

            terminal.  Bilangan  deskriptor file  untuk  keluaran 

            standar  adalah 1.

          o Keluaran kesalahan standar

            keluaran  kesalahan  standar merupakan  wadah  dimana 

            program   dapat  menuliskan  pesan   kesalahan   atas 

            eksekusi  yang  telah  dijalankan.  Default  keluaran 

            kesalahan standar bagi program adalah layar terminal. 

            Bilangan  deskriptor  file untuk  keluaran  kesalahan 

            standar adalah 2.

          Hal ini dapat digambarkan sebagai berikut:

                          ............

                         .            . |\

                         .      --------+ \

                         .      keluaran 1 > LAYAR TERMINAL

                         .      --------+ /

                         .            . |/   

                         .  |\        .

                    --------+ \       . 

          KEYBOARD  masukan  0 >      . 

                    --------+ /       .

                         .  |/        .

                         .            . |\

                         .      --------+ \

                         .      kesalahan 2> LAYAR TERMINAL

                         .      --------+ /

                         .            . |/

                          ............

                Gambar 4.1 Proses masukan dan keluaran

          Kebanyakan  program yang tersedia dalam UNIX  mengambil 

     masukan  dari  masukan standar dan  menuliskan  keluaran  ke 

     keluaran standar. Program seperti ini biasa disebut filter

          Program yang menggunakan nama file sebagai 

     salah satu parameter dari perintahnya, sesungguhnya mengubah 

     masukan  standarnya  dari keyboard ke  file,  sehingga  file 

     menjadi masukan bagi program. Sebagai contoh, misalnya  kita 

     memiliki sebuah file bernama peserta yang berisi  nama-nama. 

     File  tersebut akan diurutkan berdasarkan nama  dengan  urut 

     kecil  ke  besar, maka cara yang  dilakukan  adalah  sebagai 

     berikut:

          $ sort peserta

          arif budiman

          bagus pribadi

          denny yerianto

          fanny angela

          ferry sihombing

          irmawati

          $

          Perintah  sort mengasumsikan bahwa kita ingin  mengurut 

     isi  file  peserta.  Jika  perintah  sort  dilakukan   tanpa 

     memberikan nama file yang akan diurut sebagai argumen,  maka 

     program  mengharapkan  masukan dari  masukan  standar  yaitu 

     keyboard.  Untuk  itu maka kita dapat  memasukkan  nama-nama 

     yang  akan  diurut  satu  persatu  sebagai  masukan  melalui 

     keyboard.  Untuk mengakhiri masukan, ketikkan karakter  end-

     of-file,  yaitu  Kontrol-D  pada  awal  baris,   selanjutnya 

     perintah  sort akan segera mengurut masukan.

          $ sort                      

          denny yerianto                

          fanny angela                  (masukan via keyboard) 

          bagus pribadi

          arif budiman

          irmawati

          ferry sihombing

          ^D                            (akhiri masukan)

          arif budiman                  (mulai proses urut)          

          bagus pribadi

          denny yerianto

          fanny angela

          ferry sihombing

          irmawati

          $

          Karena nama file tidak disebutkan pada perintah sort di 

     atas  maka  masukan standar perintah tersebut  diambil  dari 

     keyboard.  Detil  perintah  sort akan  dijelaskan  pada  bab 

     selanjutnya.

     4.1.1 Pengalihan Keluaran

          Dalam  sistem UNIX, secara normal keluaran dari  sebuah 

     perintah dikirim ke keluaran standar, yaitu layar  terminal. 

     Namun keluaran tersebut secara mudah dapat dialihkan ke file 

     atau  program  lain. Kemampuan inilah yang  disebut  sebagai 

     pengalihan keluaran atau output redirection.

          Jika  karakter '>' diikuti nama file  ditambahkan  pada 

     akhir  perintah UNIX yang menampilkan keluaran  ke  keluaran 

     standar, maka keluaran dari perintah tersebut akan dialihkan 

     ke  file  yang  disebutkan dan tidak  ditampilkan  ke  layar 

     terminal. Perhatikan ilustrasi berikut ini:

                          ............

                         .            . |\

                         .      --------+ \

                         .      keluaran 1 > FILE

                         .      --------+ /

                         .            . |/   

                         .  |\        .

                    --------+ \       . 

          KEYBOARD  masukan  0 >      . 

                    --------+ /       .

                         .  |/        .

                         .            . |\

                         .      --------+ \

                         .      kesalahan 2> LAYAR TERMINAL

                         .      --------+ /

                         .            . |/

                          ............

                     Gambar 4.2 Proses pengalihan keluaran

          Baris  perintah berikut ini akan  menyebabkan  keluaran 

     perintah who dialihkan dari layar terminal ke file.

          $ who 

          heru       tty05        Oct 23 07:30

          root       tty01        Oct 23 07:28

          denny      tty02        Oct 23 07:28

          ucrit      tty03        Oct 23 07:29

          chaerind   tty04        Oct 23 07:30

          $ who > peserta

          $

          Pada  perintah who kedua tidak terlihat  keluaran  pada 

     layar   terminal.  Hal  ini  disebabkan  keluarannya   telah 

     dialihkan  ke  file peserta. Kita dapat memeriksa  isi  file 

     peserta dengan perintah cat sebagai berikut:

          $ cat peserta

          heru       tty05        Oct 23 07:30

          root       tty01        Oct 23 07:28

          denny      tty02        Oct 23 07:28

          ucrit      tty03        Oct 23 07:29

          chaerind   tty04        Oct 23 07:30

          $

          Contoh lain dari pengalihan keluaran adalah penyimpanan 

     tanggal dan waktu ke dalam file waktu sebagai berikut:

          $ date

          Fri Oct 23 07:28:32 PDT 1992

          $ date > waktu

          $ cat waktu

          Fri Oct 23 07:28:32 PDT 1992

          $

          Perintah echo menuliskan keluaran  ke keluaran standar, 

     sehingga dapat dialihkan sebagai berikut:

          $ echo baris satu > berkas

          $ cat berkas

          baris satu

          $

          Jika keluaran sebuah perintah dialihkan ke sebuah  file 

     yang sebelumnya telah berisi data, maka data sebelumnya akan 

     hilang dan diganti dengan data yang baru. Perhatikan  contoh 

     berikut ini.

          $ echo baris satu > berkas

          $ cat berkas

          baris satu

          $ echo baris dua > berkas

          $ cat berkas

          baris dua

          $

          Isi dari file berkas (baris satu) hilang tertimpa  data 

     baru ketika perintah echo kedua dieksekusi. 

          Jika  diinginkan data sebelumnya tidak hilang dan  data 

     baru  ditambahkan  di  bawah  data  lama,  maka   gunakanlah 

     karakter '>>' sebagai pengganti karakter '>'. 

          $ echo baris satu > berkas

          $ cat berkas

          baris satu

          $ echo baris dua >> berkas            (append)

          $ cat berkas

          baris satu                            (tidak hilang !)

          baris dua                         

          $

     4.1.2 Perintah cat dan Hubungannya dengan Proses

          Berbeda  dengan  uraian mengenai perintah cat  pada  bab 

     sebelumnya,  kali ini akan diuraikan kemampuan perintah  cat 

     dan hubungannya dengan proses.

          Seperti  pada  sebagaian besar  perintah  lainnya  pada 

     UNIX,  default  masukan  dan keluaran  perintah  cat  adalah 

     masukan standar dan keluaran standar. Artinya jika tidak ada 

     nama file yang dikirim sebagai parameter dari perintah  cat, 

     maka masukan diambil dari keyboard terminal.

          $ cat 

          baris satu

          baris satu

          baris dua

          baris dua

          baris tiga

          baris tiga

          ^D

          $

          Perintah  cat  diatas  menerima  masukan  dari  masukan 

     standar,  yaitu keyboard terminal dan  langsung  ditampilkan 

     melalui keluaran standar, yaitu layar terminal. 

          Agar  masukan yang kita ketik dapat disimpan  di  dalam 

     file,  maka  keluaran dari perintah cat harus  dialihkan  ke 

     file tertentu.

          $ cat > sampah

          baris satu

          baris dua

          baris tiga

          ^D

          $ cat sampah

          baris satu

          baris dua

          baris tiga

          $

          Dengan menggunakan karakter pengalihan '>>', kita dapat 

     menambahkan isi suatu file ke file lainnya.

          $ cat berkas1

          berkas1 baris 1

          berkas1 baris 2

          $ cat berkas2

          berkas2 baris 3

          berkas2 baris 4

          berkas2 baris 5

          $ cat berkas2 >> berkas1

          $ cat  berkas1

          berkas1 baris 1

          berkas1 baris 2

          berkas2 baris 3

          berkas2 baris 4

          berkas2 baris 5

          $

          Jumlah file yang akan ditambahkan  ke dalam suatu  file 

     dapat lebih dari satu dan akan disusun berurutan.

          $ cat berkas1

          berkas1 baris 1

          berkas1 baris 2

          $ cat berkas2

          berkas2 baris 3

          berkas2 baris 4

          berkas2 baris 5

          $ cat berkas3

          berkas3 baris 6

          berkas3 baris 7

          berkas3 baris 8

          $ cat  berkas2 berkas3 >> berkas1

          $ cat berkas1

          berkas1 baris 1

          berkas1 baris 2

          berkas2 baris 3

          berkas2 baris 4

          berkas2 baris 5

          berkas3 baris 6

          berkas3 baris 7

          berkas3 baris 8

          $

          Penyusunan file yang dilarang pada perintah cat  adalah 

     sebagai berikut:

          cat file1 file2 > file2

          karena  proses yang terjadi tidak akan berjalan  dengan 

     baik dan sulit diprediksi hasilnya. Untuk mengerjakan proses 

     di atas terpaksa harus digunakan file sementara.

          $ cat file1 file2 > temp

          $ mv temp file2

          $

     4.1.3 Pengalihan Masukan

          Jika  keluaran  dari sebuah perintah  dapat  dialihkan, 

     maka  masukan  dari  sebuah perintah  pun  dapat  dialihkan, 

     misalnya mengalihkan masukan dari keyboard terminal  menjadi 

     masukan dari file. Untuk mengalihkan masukan ke dalam sebuah 

     perintah  dapat digunakan karakter '<' diikuti  dengan  nama 

     file masukan. Perhatikan ilustrasi berikut ini:

                          ............

                         .            . |\

                         .      --------+ \

                         .      keluaran 1 > LAYAR TERMINAL

                         .      --------+ /

                     <   .            . |/   

                         .  |\        .

                    --------+ \       . 

            FILE    masukan  0 >      . 

                    --------+ /       .

                         .  |/        .

                         .            . |\

                         .      --------+ \

                         .      kesalahan 2> LAYAR TERMINAL

                         .      --------+ /

                         .            . |/

                          ............

                Gambar 4.3 Proses pengalihan masukan

          Sebagai contoh, untuk menghitung jumlah baris di  dalam 

     file peserta digunakan perintah wc -l sebagai berikut:

          $ wc -l peserta

                 6 peserta

          $

          Atau  kita  juga  dapat menghitung  jumlah  baris  file 

     dengan mengalihkan masukan dari perintah wc.

          $ wc -l < peserta

                 6

          $

          Perhatikan bahwa ada perbedaan keluaran yang dihasilkan 

     dari  dua  bentuk  pemanggilan perintah  wc  di  atas.  Pada 

     perintah  wc  pertama  nama file disertakan  pada  keluaran, 

     sedangkan pada perintah wc kedua nama file tidak  disertakan 

     pada keluaran. Perbedaan ini disebabkan karena pada perintah 

     wc pertama, wc mengenal nama file yang dibaca. Pada perintah 

     wc  kedua,  wc hanya mengenal bahwa ia mengambil  data  dari 

     masukan  standar dimana masukan standar menerima  pengalihan 

     dari file.

          Beberapa  perintah UNIX tidak memiliki  parameter  yang 

     berupa  nama file yang berisi data yang akan diolah. Masukan 

     hanya   diterima  melalui  masukan  standar   atau   melalui 

     pengalihan masukan. Sebagai contoh, perintah untuk melakukan 

     translasi karakter, yaitu perintah tr.

          $ tr '[a-z]' '[A-Z]'             (masukan standar)

          chaerinda

          CHAERINDA

          denny yerianto

          DENNY YERIANTO

          ^D

          $ cat peserta

          arif budiman

          bagus pribadi

          denny yerianto

          fanny angela

          ferry sihombing

          irmawati

          $ tr '[a-z]' '[A-Z]' < peserta   (hanya via pengalihan)

          ARIF BUDIMAN

          BAGUS PRIBADI

          DENNY YERIANTO

          FANNY ANGELA

          FERRY SIHOMBING

          IRMAWATI

          $

     4.1.4 Pengalihan Masukan dan Keluaran

          Sering  terjadi  bahwa kita tidak  sekedar  mengalihkan 

     masukan   saja   atau  mengalihkan  keluaran   saja.   Namun 

     mengalihkan   masukan  dan  keluaran   bersama-sama.   Untuk 

     jelasnya marilah kita lihat kasus berikut ini.

          $ cat peserta

          arif budiman

          bagus pribadi

          denny yerianto

          fanny angela

          ferry sihombing

          irmawati

          $ tr '[a-z]' '[A-Z]' < peserta   (hanya via pengalihan)

          ARIF BUDIMAN

          BAGUS PRIBADI

          DENNY YERIANTO

          FANNY ANGELA

          FERRY SIHOMBING

          IRMAWATI

          $

          $ cat peserta

          arif budiman

          bagus pribadi

          denny yerianto

          fanny angela

          ferry sihombing

          irmawati

          $

          Hasil perintah tr tidak tersimpan di dalam file peserta 

     dan   file   aslinya  tidak  berubah  sama   sekali.   Untuk 

     mendapatkan hasil dari perintah tr maka kita harus melakukan 

     pengalihan masukan dan keluar bersama-sama.

          $ tr '[a-z]' '[A-Z]' < peserta > uppercase  

          $ cat uppercase

          ARIF BUDIMAN

          BAGUS PRIBADI

          DENNY YERIANTO

          FANNY ANGELA

          FERRY SIHOMBING

          IRMAWATI

          $

          Jika  diinginkan  file  aslinya  berubah,  kita   perlu 

     melakukan:

          $ mv uppercase peserta

          $ cat peserta

          ARIF BUDIMAN

          BAGUS PRIBADI

          DENNY YERIANTO

          FANNY ANGELA

          FERRY SIHOMBING

          IRMAWATI

          $

     4.1.5 Pengalihan Keluaran Kesalahan Standar

          Ada beberapa keluaran program yang ditampilkan di layar 

     terminal tetapi tidak dapat dialih dengan menggunakan  cara-

     cara  di atas. Keluaran tersebut adalah  keluaran  kesalahan 

     standar.

          $ cat peserta takada > gabung

          cat: cannot open takada         (file takada tidak ada)

          $ cat gabung

          ARIF BUDIMAN

          BAGUS PRIBADI

          DENNY YERIANTO

          FANNY ANGELA

          FERRY SIHOMBING

          IRMAWATI

          $

          Perhatikan  bahwa  pesan  kesalahan  cat:  cannot  open 

     takada  tidak terekam di dalam file gabung.  Permasalahannya 

     kini adalah bagaimana agar pesan kesalahan tersebut  terekam 

     di  dalam  file  gabung  dan  tidak  ditampilkan  di   layar 

     terminal.   Untuk  keperluan  tersebut,  maka   kita   perlu 

     mengalihkan  keluaran kesalahan standar.  Perhatikan  contoh 

     ilustrasi pengalihan sebagai berikut:

                          ............

                         .            .      |\

                         .      -------------+ \

                         .      keluaran      1 > FILE

                         .      -------------+ /

                         .            .   ^  |/   

                         .  |\        .  / \

                    --------+ \       . /_2_\

          KEYBOARD  masukan  0 >      .  | |

                    --------+ /       .  | |

                         .  |/        .  | |

                         .            .  | |

                         .      ---------+ |

                         .      kesalahan  | 

                         .      -----------+

                         .            . 2&1

                          ............

       Gambar 4.4 Proses pengalihan keluaran kesalahan standar

          Pada proses pengalihan keluaran kesalahan standar harus 

     memperhatikan deskriptor file. Perhatikan tabel berikut ini.

          ------------------------------------------------------

          Nomor Deskriptor file      Fungsi

          ------------------------------------------------------

                    0                Masukan standar

                    1                Keluaran standar

                    2                Keluaran kesalahan standar

          ------------------------------------------------------

                           Tabel 4.1. Deskriptor file

          Untuk  mengalihkan keluaran kesalahan standar ke  dalam 

     sebuah  file  digunakan  deskriptor  file  2  dengan  notasi 

     sebagai berikut  

          2> namafile 

          Perhatikan bahwa konstruksi penulisan tidak mengijinkan 

     penggunaan   spasi  diantara  angka  2  dan  karakter   '>'. 

     Berikut ini contoh dimana pesan kesalahan dialihkan ke dalam 

     sebuah file. 

          $ cat peserta takada 2> salah

          ARIF BUDIMAN

          BAGUS PRIBADI

          DENNY YERIANTO

          FANNY ANGELA

          FERRY SIHOMBING

          IRMAWATI

          $ cat salah

          cat: cannot open takada         (file takada tidak ada)

          $

          Untuk  menggabungkan  keluaran  standar  atau  keluaran 

     kesalahan ke file yang mengikuti digunakan notasi berikut:

          perintah >& 

          Berikut   ini  contoh  untuk   menggabungkan   keluaran 

     kesalahan standar (2) ke keluaran standar (1).

          $ cat peserta takada > output 2>&1

          $ cat salah

          ARIF BUDIMAN

          BAGUS PRIBADI

          DENNY YERIANTO

          FANNY ANGELA

          FERRY SIHOMBING

          IRMAWATI

          cat: cannot open takada         (kesalahan tergabung)

          $

     4.2 PEMIPAAN

          Pada  contoh-contoh diatas bila kita ingin  menggunakan 

     keluaran  dari  suatu program menjadi masukan  dari  program 

     lain,  maka  kita harus menggunakan  file  sementara,  untuk 

     aliran  data.  Berkas sementara tersebut akan  dihapus  jika 

     telah selesai digunakan. 

          $ who > pemakai

          $ wc -l < pemakai

          5

          $

          Cara lain yang lebih efisien adalah dengan  menggunakan 

     fasilitas  pemipaan dari UNIX. Pemipaan merupakan  mekanisme 

     untuk  menggabungkan  keluaran dari  suatu  program  menjadi 

     masukan   dari  program  lain.  Untuk   melakukan   pemipaan 

     digunakan  karakter  pipa '|'   yang  akan  menginstruksikan 

     shell  untuk membangun hubungan keluaran masukan antara  dua 

     program. Hal ini dapat diilustrasikan sebagai berikut:

                                   ............

                                  .            . |\

                                  .      --------+ \

                                  .      keluaran 1 > LAYAR 

                             |    .      --------+ /  TERMINAL   

           ............           .            . |/

          .            . |\       .  |\        .

          .      --------+ \---------+ \       .

          .      keluaran 1 >masukan  0 >      .

          .      --------+ /---------+ /       .

     KEY  .            . |/       .  |/        .

     BOARD.  |\        .          .            . |\

     --------+ \       .          .      --------+ \

     masukan  0 >      .          .      kesalahan 2> LAYAR 

     --------+ /       .          .      --------+ /  TERMINAL

          .  |/        .          .            . |/

          .            .          .            . |\

          .      -----------------.            .-+ \

          .      kesalahan        .            .  2 > LAYAR 

          .      -----------------.            .-+ /  TERMINAL

          .            .          .            . |/

           ............            ............

                     Gambar 4.5 Proses pemipaan

          Contoh  di  atas dapat diubah dengan  menggunakan  pipa 

     sebagai berikut:

          $ who | wc -l 

          5

          $

          Program yang membaca masukan dari masukan standar dapat 

     di  alihkan masukannya dari program lain dengan  menggunakan 

     pipa.  Konvensi  ini  berlaku  untuk  hampir  semua  program 

     standar dalam sistem UNIX. 

          Pemipaan  dapat dilakukan secara berurutan untuk  lebih 

     dari dua program. Program akan berjalan sesuai urutan  dalam 

     pipa.

          $ who | sort | wc -l

          5

          $

          Sistem  UNIX  hanya memproses  pemipaan  bagi  keluaran 

     standar dari suatu program dan tidak memproses pemipaan bagi 

     keluaran kesalahan standar sehingga kesalahan suatu  program 

     pada saat melakukan pemipaan tetap ditampilkan.

          $ ls file1 file2 file3 file4 | wc -l > test

          file2 not found

          $ cat test

          3

          $

          Dengan sedikit trik kita dapat mengatasi hal ini, yaitu 

     dengan  pengalihan  kesalahan standar  ke  keluaran  standar 

     sebagai berikut:

          $ ls file1 file2 file3 file4  2>&1 | wc -l > test

          $ cat test

          file2 not found

          3

          $

          Sistem   UNIX   juga   menyediakan   fasilitas    untuk 

     mencabangkan  keluaran  dari hasil eksekusi  program,  yaitu 

     dengan   menggunakan   perintah    tee.   Hal   ini    dapat 

     diilustrasikan sebagai berikut:

                                        FILE

                                         ^

                                        / \

                          ............ /_1_\

                         .            . | |  |\

                         .      --------+ +--+ \

                         .      keluaran      1 > LAYAR TERMINAL

                         .      -------------+ /

                         .            .      |/   

                         .  |\        .

                    --------+ \       . 

          KEYBOARD  masukan  0 >      . 

                    --------+ /       .

                         .  |/        .

                         .            . |\

                         .      --------+ \

                         .      kesalahan 2> LAYAR TERMINAL

                         .      --------+ /

                         .            . |/

                          ............

                          Gambar 4.6 Proses tee

          Perhatikan contoh berikut ini:

          $ who | tee pemakai | wc -l

          5

          $ cat pemakai

          heru       tty05        Oct 23 07:30

          root       tty01        Oct 23 07:28

          denny      tty02        Oct 23 07:28

          ucrit      tty03        Oct 23 07:29

          chaerind   tty04        Oct 23 07:30

          $

          Dengan  perintah tee, hasil keluaran dari perintah  who  

     yang  diterima  melalui  pipa, dicabang  dua  (T)  ke  layar 

     terminal dan file.

     4.3 PROSES LATAR DEPAN DAN LATAR BELAKANG

          UNIX   merupakan   sebuah   sistem   multitasking   dan 

     multiuser. Multitasking berarti lebih dari satu program yang 

     dapat   berjalan  pada  waktu  yang   bersamaan.   Sedangkan 

     multiuser  berarti bahwa lebih dari satu pemakai yang  dapat 

     login  dan  menjalankan program pada waktu  yang  bersamaan. 

     Terdapat sekurangnya satu proses atau program yang  berjalan 

     pada  sistem  UNIX untuk setiap pemakai yang  login. 

          Konsep pemikiran yang mendasari pemikiran  multitasking 

     dan  multiuser  adalah  dikarenakan  komputer  sangat  cepat 

     sehingga  dapat  menjalankan  sebuah  proses  untuk  sesaat, 

     beralih  ke proses lain dan menjalankan untuk  sesaat  serta 

     kemudian  beralih kembali ke proses semula. Dengan  demikian 

     seolah-olah  keduanya  berjalan pada waktu  yang  bersamaan. 

     UNIX menentukan program yang berjalan dan mengatur peralihan 

     bolak-balik antar mereka. 

          Setiap  proses  yang  dijalankan  oleh  UNIX   memiliki 

     sebuah  prioritas  tertentu. Jika terdapat  beberapa  proses 

     yang  siap  untuk dijalankan,  maka  UNIX  akan  menjalankan 

     proses yang memiliki prioritas tertinggi. 

          Ada dua jenis proses yang terjadi di dalam sistem UNIX, 

     yaitu  proses  yang  berhubungan  langsung  dengan  terminal 

     pemakai  disebut proses latar depan  (foreground  processes) 

     dan  proses  yang  berjalan yang  tidak  berhubungan  dengan 

     terminal  pemakai disebut proses latar belakang  (background 

     processes).

          Kita  dapat mendefinisikan sebuah proses  atau  program 

     sebagai proses latar belakang dengan meletakkan karakter '&' 

     pada akhir perintah. Dengan demikian kita dapat  menjalankan 

     program lain tanpa harus menunggu program atau proses  latar 

     belakang selesai.

          $ ls -l /etc | sort > isi &

          115                   (nomor id proses)

          $ date                (proses pertama belum selesai)

          Fri Oct 23 07:28:32 PDT 1992

          $

          Proses  latar  belakang  dijalankan  bila  proses  yang 

     berhubungan  dengan terminal sedang menunggu.  Pada  umumnya 

     program   yang  berjalan  dengan  waktu  cukup   lama   akan 

     dilaksanakan dengan prioritas rendah di latar belakang.

          Untuk melihat status proses yang dijalankan oleh sistem 

     kita gunakan perintah ps sebagai berikut:

          $ ps

            PID TTY  TIME CMD

             35  01  0:02 sh

             77  01  0:00 ps

          $

          Status  proses  secara  lengkap  dapat  dilihat  dengan 

     menggunakan pilihan -l pada perintah ps sebagai berikut:

      $ ps -l

      F S UID  PID  PPID CPU PRI NICE ADDR SZ WCHAN TTY TIME CMD

      1 S 101   89     1   3  30   20 5512 12 50602  02 0:02 sh   

      1 R 101  183    89  52  53   20 6021 22        02 0:02 ps l 

      $

     Penjelasan kode status perintah ps -l:

          F    proses flag

               01 core

               02 proses pertukaran dari sistem

               04 proses terkunci dalam RAM

               10 proses sedang ditukar

               20 proses sedang dicari

          S    keaadan proses

               O Non eksisten

               S tidur

               W menunggu 

               R berjalan

               I intermediate

               Z diakhiri

          UID  id pemakai dari pemilik proses

          PID  id proses

          PPID PID dari proses ayah

          C    penggunaan prosesor untuk penjadwalan

          PRI  prioritas proses (0 s/d 120)

          NI   digunakan dalam komputasi prioritas

          ADDR Alamat memori dari proses bila dalam memori

               Alamat  disket  dari proses bila  tidak  di  dalam 

               memori

          SZ   ukuran image proses memori dalam 512 byte blok

          WCHAN kejadian dengan proses sedang tidur atau menunggu

          TTY  terminal yang mengendalikan proses

          TIME waktu kumulatif pengerjaan

          CMD  Perintah dan argumennya

     4.4 MENGHENTIKAN PROSES DENGAN PERINTAH kill

          Untuk  menghentikan  sebuah proses yang  dijalankan  di 

     latar   belakang  dapat  digunakan  perintah   kill.   Untuk 

     melakukan penghentian proses tersebut kita perlu  mengetahui 

     nomor id proses atau PID dari proses yang bersangkutan.

          kill PID

          Nomor  id  proses  dapat dilihat  dari  keluaran  balik 

     dari sistem ketika perintah dilaksanakan dengan proses latar 

     belakang.

          $ troff doc & 

          56                   (nomor id proses)

          $

          atau dapat dilihat dengan menggunakan perintah ps.

          $ troff doc & 

          56                   (nomor id proses)

          $ ps

            PID TTY  TIME CMD

             35  01  0:05 sh

             56  01  0:02 troff doc               (proses troff !)

             77  01  0:01 ps

          $

          Perhatikan  contoh  untuk menghentikan  proses  berikut 

     ini:

          $ troff doc & 

          56                   (nomor id proses)

          $ ps

            PID TTY  TIME CMD

             35  01  0:05 sh

             56  01  0:02 troff doc               (hapus !)

             77  01  0:01 ps

          $ kill 56

          $ ps

            PID TTY  TIME CMD

             35  01  0:09 sh

             99  01  0:01 ps

          $

          Perintah kill bekerja dengan mengirimkan sebuah  sinyal 

     pada  proses.  Perintah kill dapat  mengirim  bermacam-macam 

     sinyal sesuai dengan kebutuhannya. Proses yang bekerja hanya 

     berhenti  jika  sinyal yang dikirim  sesuai.  Nilai  default 

     dari  sinyal  untuk perintah kill adalah  15,  yaitu  sinyal 

     terminasi.

          Beberapa  proses  dapat dihentikan  dengan  menggunakan 

     sinyal  15  namun proses tersebut masih tetap  berjalan  dan 

     tidak mengakhirinya. Bila hal ini terjadi, gunakanlah sinyal 

     9 untuk mengakhiri proses tersebut.

          $ kill -9 115

          $

     4.5 MENJADUALKAN PROSES DENGAN PERINTAH at 

          Terkadang kita menginginkan suatu proses dilakukan pada 

     waktu yang kita jadualkan. Untuk maksud tersebut dapat  kita 

     gunakan  perintah  at  yang  diikuti  dengan  jadual   waktu 

     pelaksanaan    perintah    dan    perintah-perintah     yang 

     dijadualkan.  Selanjutnya  sistem  akan  memberikan   respon 

     dengan   menampilkan   nomor  id   penjadualan   dan   waktu 

     pelaksanaan proses. Nomor id penjadualan ini berfungsi untuk 

     membatalkan proses yang telah dijadualkan. 

          $ at 1200

          echo waktunya makan siang !

          ^D

          726428280.a   Thu Jan  7 12:00:00 1993

          $

          Perintah ini akan mengeksekusi perintah echo pada pukul 

     12.00.  Keluaran  dari perintah echo tersebut  akan  dikirim 

     secara   otomatis  kepada  kita  melalui  electronic   mail. 

     (Penggunaan   electronic  mail  akan  dijelaskan   pada   bab 

     selanjutnya).  

          Jika   perintah  yang  dieksekusi  tidak   menghasilkan 

     keluaran atau jika keluaran dari perintah yang dieksekusi di 

     arahkan ke file,  maka tidak ada pesan yang kita terima dari 

     electronic  mail,  kecuali  jika  perintah  yang  dieksekusi 

     mengalami kesalahan.

          $ at 1600

          ls -al > listfile

          ^D

          726428280.a   Thu Jan  7 16:00:00 1993 

          $

          Kita   juga   dapat  menjadualkan   beberapa   perintah 

     sekaligus sebagai berikut:

          $ at 1600

          ls -al /tmp/*

          rm /tmp/*

          ls -al /usr/tmp/*

          rm /usr/tmp/*

          ^D

          726428280.a   Thu Jan  7 16:00:00 1993 

          $

          Format   jadual  waktu  yang  digunakan   perintah   at 

     bermacam-macam. Kita dapat menggunakan format waktu 24  jam, 

     misalnya:

          - pukul 8.30 pagi dinyatakan 0830

          - pukul 1.45 siang dinyatakan 1345

          - pukul 8 malam dinyatakan 20

          Atau  kita juga dapat menggunakan tanda am dan pm  pada 

     jadual waktu sebagai berikut:

          - pukul 8.30 pagi dinyatakan 8:30am

          - pukul 1.45 siang dinyatakan 1:45pm

          - pukul 8 malam dinyatakan 8pm

          Pukul  12  siang dan malam dibedakan  dengan  noon  dan 

     midnight sebagai berikut:

          - pukul 12.00 siang dinyatakan 12noon

          - pukul 12.00 malam dinyatakan 12midnight

          Kita   dapat   juga  menjadualkan   berdasarkan   menit 

     (minutes),  jam (hours), hari (days), minggu (weeks),  bulan 

     (months) dan tahun (years). 

          - at 4am Fri + 1 week

          - at now + 1 year

          - at now + 1 hour

          - at 4 jun 20

          - at 12midnight jul 4, 1993

          - at 7:30pm today

          Untuk melihat daftar proses yang telah dijadualkan  dan 

     belum  dilaksanakan,  dapat  digunakan  perintah  at  dengan 

     pilihan -l sebagai berikut:

          $ at -l

          726428280.a   Thu Jan  7 09:38:00 1993

          726428281.a   Mon Jan 11 09:38:01 1993

          726428292.a   Fri Jan  8 10:00:04 1993

          726428302.a   Thu Jan  7 10:08:12 1993

          726428309.a   Thu Jan  7 10:17:07 1993

          $

          Sayangnya   yang   ditampilkan   hanyalah   nomor    id 

     penjadualan dan waktu pelaksanaannya saja. Kita tidak  dapat 

     mengetahui proses apa yang akan dilaksanakan.

          Untuk  membatalkan  proses yang  telah  kita  jadualkan 

     dapat digunakan perintah at dengan pilihan -r.

          $ at -l                                   (lihat ..)

          726428280.a   Thu Jan  7 09:38:00 1993

          726428281.a   Mon Jan 11 09:38:01 1993

          726428292.a   Fri Jan  8 10:00:04 1993

          726428302.a   Thu Jan  7 10:08:12 1993

          726428309.a   Thu Jan  7 10:17:07 1993

          $ at -r 726428292.a   726428302.a         (batalkan ..)  

          $ at -l                                   (lihat ..)

          726428280.a   Thu Jan  7 09:38:00 1993

          726428281.a   Mon Jan 11 09:38:01 1993

          726428309.a   Thu Jan  7 10:17:07 1993

BAB 5

U T I L I T A S

        Sistem UNIX memiliki tidak kurang dari 200 buah program 

     yang  dapat  digunakan  sebagai  utilitas.   Program-program 

     tersebut  sebagian  besar berbentuk filter,  sehingga  dapat 

     digabungkan  dengan program lainnya dengan menggunakan  pipa 

     untuk melaksanakan tugas-tugas tertentu. 

          Pada bab ini akan diuraikan sejumlah  utilitas-utilitas 

     yang  bermanfaat  bagi tugas-tugas  sehari-hari.  Pembahasan 

     akan mencakup utilitas-utilitas:

          - mencetak

          - mengurut data

          - mengeditan teks tanpa editor

          - mencari untaian karakter

          - membandingkan file

          - mencari file

          - menghitung bilangan

     5.1 MENCETAK

     5.1.1 Perintah lp

          Perintah  yang  digunakan  untuk  melakukan  pencetakan 

     adalah  lp, yang diikuti nama file yang akan  dicetak.  Nama 

     file  dapat lebih dari satu file. Perhatikan contoh  berikut 

     ini.

          $ lp file1 file2 file3 file4

          request id is printer-174 (4 files)

          $

          Respon  sistem dari perintah tersebut adalah  informasi 

     yang  berisi  nomor  id  pencetakan  dan  jumlah  file  yang 

     dicetak.  Nomor  id  pencetakan  berguna  untuk   pembatalan 

     pencetakan.

          Jika nama file tidak dicantumkan maka masukan  perintah 

     lp diambil dari masukan standar. Sering pula masukan dikirim 

     melalui pemipaan.

          $ ls -al | lp

          request id is printer-175 

          $

          Jika  diinginkan  mencetak copy file  lebih  dari  satu 

     dapat  digunakan  pilihan -n dengan diikuti  jumlah  copynya 

     sebagai berikut:

          $ lp -n3 file1

          request id is printer-176 (1 file)

          $

          Jika  pilihan  -m  dicantumkan,  maka  setelah   proses 

     pencetakan  dilaksanakan, sistem akan mengirim pesan  kepada 

     kita  melalui  electronic mail. 

          Jika  pilihan -w yang dicantumkan, maka setelah  proses 

     pencetakan  dilaksanakan, sistem akan mengirim pesan  kepada 

     layar  terminal kita. Jika saat itu kita sudah  tidak  aktif 

     atau  keluar  sistem,  maka  sistem  akan  mengirim  melalui 

     electronic mail.

          Untuk  melihat file-file yang sedang  diantrikan  untuk 

     proses  pencetakan dapat digunakan perintah  lpstat  sebagai 

     berikut:

          $ lpstat

          printer-174         denny            12345   Jan  6 10:12

          printer-175         denny              723   Jan  6 11:47

          printer-176         denny              136   Jan  8 10:37

          printer-177         denny              221   Jan  8 10:39

          printer-178         denny             4535   Jan  8 10:39

          $

          Selanjutnya   jika   kita  ingin   membatalkan   proses 

     pencetakan  yang akan dan atau sedang dilakukan,  maka  kita 

     dapat  menggunakan  perintah cancel yang  diikuti  nomor  id 

     pencetakan.

          $ cancel 176

          request "printer-176" cancelled

          $ lpstat

          printer-174         denny            12345   Jan  6 10:12

          printer-175         denny              723   Jan  6 11:47

          printer-177         denny              221   Jan  8 10:39

          printer-178         denny             4535   Jan  8 10:39

          $

     5.1.2 Perintah pr

          Perintah  pr  digunakan  untuk  memperbaiki  perwajahan 

     atau  format  teks yang akan dicetak  ke  printer.  Biasanya 

     perintah   ini  dirangkaikan  dengan  perintah   lp   dengan 

     menggunakan pemipaan sebagai berikut:

          $ pr file1 | lp 

          request id is printer-177 (1 file)

          $

          Keluaran  dari perintah pr akan dipisahkan per  halaman 

     dengan  default jarak atas dan bawah adalah 5 baris.  Bagian 

     kepala  kertas yang dicetak berisi tanggal pencetakan,  nama 

     file, dan halaman sebagai berikut:

          $ pr peserta

          Jan  6 11:45 1993  peserta Page 1

          Maryann Clark         101

          Sally Smith           123

          Jane Bailey           121

          Jack Austin           120

          Steve Daniels         111

          Sylvia Dawson         110

          Henry Morgan          112

          Hank Parker           114

          Charlie Smith         122

          Bill Williams         100

               .

               .

               .

          $

          Panjang  dan lebar default dari perintah pr ini  adalah 

     66  baris  ke bawah dan 72 karakter ke samping  atau  ukuran 

     kertas  8,5  inci  x 11 inci.  Jika  diinginkan  kita  dapat 

     mengubahnya dengan menggunakan perintah pr dengan pilihan -l 

     misalnya  untuk ukuran kertas A4, yaitu panjangnya 72  baris 

     adalah sebagai berikut:

          $ pr -l72 peserta |  lp

          request id is printer-178 (1 file)

          $

          Kita   dapat   juga   menampilkan   keterangan    untuk 

     menggantikan  nama  file  yang  dicetak  dengan  menggunakan 

     pilihan -h.

          $ pr -h tes peserta | lp

          request id is printer-179 (1 file)

          $

          Jika  keterangan lebih dari satu kata  maka  keterangan 

     tersebut  harus  diletakkan di dalam  karakter  kutip  ganda 

     sebagai berikut:

          $ pr -h "Daftar Peserta Tes UNIX" 

          Jan  6 11:45 1993  Peserta Tes Page 1

          Maryann Clark         101

          Sally Smith           123

          Jane Bailey           121

          Jack Austin           120

          Steve Daniels         111

          Sylvia Dawson         110

          Henry Morgan          112

          Hank Parker           114

          Charlie Smith         122

          Bill Williams         100

               .

               .

               .

          $

          Disamping  itu kita dapat juga membuat  keluaran  dalam 

     bentuk  kolom.  Sebelumnya  tentukan  lebar  halaman  dengan 

     menggunakan pilihan -w. 

          $ cat peserta

          Maryann Clark         101

          Sally Smith           123

          Jane Bailey           121

          Jack Austin           120

          Steve Daniels         111

          Sylvia Dawson         110

          Henry Morgan          112

          Hank Parker           114

          Charlie Smith         122

          Bill Williams         100

          $ pr -2 -w65 peserta

          Jan  6 11:54 1993  peserta Page 1

          Maryann Clark         101         Sylvia Dawson           110

          Sally Smith           123         Henry Morgan            112

          Sally White           123         Hank Parker             114

          Jane Bailey           121         Charlie Smith           122

          Jack Austin           120         Bill Williams           100

          Steve Daniels         111

          $

          Jika  kita memberi lebar yang terlalu  kecil  akibatnya 

     terjadi tumpang tindih sebagai berikut:

          $ pr -2 -w40 peserta

          Jan  6 11:54 1993  peserta Page 1

          Maryann Clark     Sylvia Dawson      

          Sally Smith       Henry Morgan       

          Sally White       Hank Parker        

          Jane Bailey       Charlie Smith      

          Jack Austin       Bill Williams      

          Steve Daniels    

          $

     5.2 MENGURUT DATA

          Perintah   yang   dapat   digunakan   untuk   melakukan 

     pengurutan   data  adalah  perintah  sort.  Secara   default 

     pengurutan dilakukan dari kecil ke besar. Perhatikan  contoh 

     berikut ini.

          $ cat nama

          denny

          chaerinda

          irmawati 

          chaerinda

          $ sort nama

          chaerinda

          chaerinda

          denny

          irmawati

          $

          Untuk  melakukan hal yang sebaliknya, yaitu  pengurutan 

     dari besar ke kecil digunakan pilihan -r.

          $ sort nama

          irmawati

          denny

          chaerinda

          chaerinda

          $

          Untuk  menghilangkan  duplikasi  di  atas,  kita  dapat 

     gunakan pilihan -u.

          $ sort -u nama

          chaerinda                (duplikasi tiada !)

          denny

          irmawati

          $

          Perhatikan  contoh berikut dimana data  yang  digunakan 

     adalah jenis data numerik:

          $ cat dataxy

          5    27

          2    12

          3    33

          -5   11

          14   -9

          0    1

          33   22

          $ sort dataxy

          -5   11

          0    1

          14   -9

          2    12

          3    33

          33   22

          5    27

          $

          Ternyata  hasil pengurutannya tidak benar  untuk  jenis 

     data  numerik, karena secara default, sort  hanya  melakukan 

     pengurutan  terhadap  data  non-numerik  berdasarkan  ASCII. 

     Khusus data numerik, lakukan pengurutan dengan pilihan -n.

          $ sort -n dataxy

          -5   11

          0    1

          2    12

          3    33

          5    27

          14   -9

          33   22

          $

          sort juga dapat mengurutkan berdasarkan field tertentu. 

     Cara  yang digunakan adalah dengan melewatkan  (skip)  field 

     yang tidak dianggap penting. Jika contoh data di atas adalah 

     data  x dan y, maka jika kita ingin mengurutkan  berdasarkan 

     y,  yang harus kita lakukan adalah melewatkan field  pertama 

     (field x), sehingga dapat dinyatakan sebagai berikut:

          $ sort +1n dataxy        (sort berdasarkan y)

          14   -9

          0    1

          -5   11

          2    12

          33   22

          5    27

          3    33

          $

          Standar  pemisah  field adalah spasi  atau  tab.  Namun 

     demikian pemisah field tersebut dapat kita ubah yaitu dengan 

     menggunakan pilihan -t. Misalkan kita akan mengurutkan  file 

     password  pemakai yaitu file /etc/passwd  berdasarkan  nomor 

     id-nya.

          $ cat /etc/passwd

          root:hxI/hs24w48Qg:0:0:Super user:/:/bin/csh

          bin:Dsk4SKksadknd:3:3:bin:/bin:/bin/sh

          denny:Kawhju.ZQ4GOk:1:100:mahasiswa:/usr/denny:/bin/sh

          chae:9zw/8ok/cPVIw:2:100:mahasiswa:/usr/chae:/bin/sh

               .

               .

               .

          $

          $ sort +2n -t: /etc/passwd

          root:hxI/hs24w48Qg:0:0:Super user:/:/bin/csh

          denny:Kawhju.ZQ4GOk:1:100:mahasiswa:/usr/denny:/bin/sh

          chae:9zw/8ok/cPVIw:2:100:mahasiswa:/usr/chae:/bin/sh

          bin:Dsk4SKksadknd:3:3:bin:/bin:/bin/sh

               .

               .

               .

          $

     5.3 MENGEDITAN TEKS TANPA EDITOR 

     5.3.1 Perintah cut

          Secara  umum  perintah  cut  akan  mengambil   karakter 

     tertentu  dari  setiap  baris data  yang  diberikan,  sesuai 

     dengan  pilihan  (option)  yang  diberikan.  Format  umumnya 

     adalah:

          cut -ckar file

          dimana  kar  adalah jangkauan dari karakter  yang  akan 

     kita  ambil  dari  setiap baris  yang  diberikan.  Jangkauan 

     memiliki ekspresi tersendiri seperti pada contoh berikut:

          $ cat data               (data untuk percobaan)      

          selamat mencoba

          1234567890 bilangan

          $ cut -c5 data           (ambil karakter ke lima)

          m

          5

          $ cut -c5- data          (ambil karakter ke lima dst)

          mat mencoba

          567890 bilangan

          $ cat data | cut -c2,7   (ambil karakter ke 2 dan 7)

          et

          27

          $ cat data | cut -c2-7   (ambil karakter ke 2 s/d 7)

          lamat

          34567

          $ 

          Disamping  bekerja berdasarkan karakter,  perintah  cut 

     dapat  bekerja berdasarkan field, yaitu menggunakan  pilihan 

     -f.  Pemisah  field  standar adalah  blank.  Untuk  mengubah 

     pemisah field standar dapat kita gunakan pilihan -d. 

          $ cat /etc/passwd

          root:hxI/hs24w48Qg:0:0:Super user:/:/bin/sh

          bin:Dsk4SKksadknd:3:3:bin:/bin:/bin/sh

          denny:Kawhju.ZQ4GOk:1:100:mahasiswa:/usr/denny:/bin/sh

          chae:9zw/8ok/cPVIw:2:100:mahasiswa:/usr/chae:/bin/sh

               .

               .

          $ cut -d: -f1 /etc/passwd     (ambil field ke 1)

          root

          bin

          denny

          chae

            .

            .

            .

          $ cut -d: -f1,6 /etc/passwd   (ambil field ke 1 dan 6)

          root:/

          bin:/bin

          denny:/usr/denny

          chae:/usr/chae

            .

            .

            .

          $

          Perintah   cut  tidak  mengubah  data   aslinya.   Jika 

     dinginkan perubahan, maka harus dilakukan dengan menggunakan 

     pengalihan keluaran (output redirection).

     5.3.2 Perintah paste

          Perintah  paste  adalah kebalikan  dari  perintah  cut, 

     yaitu   perintah   untuk  mengabungkan   dua   file   secara 

     berdampingan. Secara umum formatnya adalah:

          paste file

          dimana file adalah dapat lebih dari satu file yang akan 

     digabungkan.

          $ cat nama

          denny

          chaerinda

          irmawati

          $ cat alamat

          jakarta  8290503

          brebes   5598455

          medan    7895477

          $ paste nama alamat           

          denny     jakarta  8290503

          chaerinda brebes   5598455

          irmawati  medan    7895477

          $

          Perlu  diperhatikan bahwa pemisah antar masukan,  dalam 

     hal  ini  kedua  file tersebut,  adalah  sebuah  tab.  Untuk 

     mengubah  pemisah  antar  masukan sesuai  dengan  yang  kita 

     inginkan, dapat digunakan pilihan -d. 

          $ paste -d'+' nama alamat           

          denny+jakarta  8290503

          chaerinda+brebes   5598455

          irmawati+medan    7895477

          $

     5.3.3 Perintah tr

          Perintah tr adalah utilitas yang dapat digunakan  untuk 

     mentranslasikan  karakter dari standar masukan. Secara  umum 

     formatnya adalah:

          tr pola1 pola2

          dimana pola1 dan pola2 adalah satu atau lebih  karakter 

     tunggal. Karakter dari pola1 akan ditranslate ke pola2  yang 

     sesuai.

          $ cat contoh

          saya sedang belajar pemrograman shell

          pada sistim operasi unix

          semoga cepat lancar dan mahir

          $ cat contoh | tr e X              (ganti e dengan X)

          saya sXdang bXlajar pXmrograman shXll

          pada sistim opXrasi unix

          semoga cXpat lancar dan mahir

          $  tr  '[a-z] '[A-Z]' < contoh    (ubah huruf  kecil)

          SAYA SEDANG BELAJAR PEMROGRAMAN SHELL

          PADA SISTIM OPERASI UNIX

          SEMOGA CEPAT LANCAR DAN MAHIR

          $

          Perintah  tr  juga  dapat  digunakan  untuk   menghapus 

     karakter tunggal dari untaian masukan.

          $ tr -d ' '  < contoh                   (hapus ' ')

          sayasedangbelajarpemrogramanshell

          padasistimoperasiunix

          semogacepatlancardanmahir

          terimakasih

          $ cat contoh2

          a1,a2,a3

          b1,b2,b3

          $ tr -d '[0-9]' < contoh2               (hapus bilangan)

          a,a,a

          b,b,b

          $

     5.4 MENCARI UNTAIAN KARAKTER 

     5.4.1 Ekspresi Reguler

          Sebelum  kita mempelajari lebih jauh mengenai  perintah 

     grep, fgrep dan egrep kita perlu mengenal ekspresi  reguler. 

     Ekspresi  reguler  adalah suatu  ekspresi  untuk  menyatakan 

     suatu pencocokan pola. 

     5.4.1.1 Ekspresi Reguler '.'

          Ekspresi  reguler  titik  digunakan  untuk   mencocokan 

     sebuah karakter tunggal apa saja. Ekspresi reguler ini mirip 

     dengan karakter ? bagi shell. Dengan demikian,

               d.

          menyatakan  bahwa pola yang akan cocok adalah d  dengan 

     diikuti satu karakter. Perhatikan gambar berikut:

          d9    ------>       +---------+    

          dk    ------>       |         |    ------->  d9          

          dQ    ------>       |    d.   |    ------->  dk   

          d     ------>       |         |    ------->  dQ  

          1234  ------>       +---------+

          Gambar 5.1 Penggunaan ekspresi reguler titik: d.

          Atau kita dapat pula menggunakan ekspresi reguler titik 

     sebagai berikut:

          devy    ------>       +---------+    

          denny   ------>       |         |    ------->  denny       

          Sudarty ------>       |  d...y  |    ------->  Sudarty

          DennY   ------>       |         |    ------->  d234ydf

          d234ydf ------>       +---------+

          Gambar 5.2 Penggunaan ekspresi reguler titik: d...y

     5.4.1.2 Ekspresi Reguler '^'

          Ekspresi   reguler  '^'  digunakan   untuk   menyatakan 

     pencocokan dilakukan pada awal baris. Contoh

          Sistem terbuka didukung oleh UNIX

          UNIX adalah sistem operasi

          yang ada pada sejumlah jenis mesin

          Hanya UNIX yang bisa begini

          Jika kita ingin mendapatkan kata UNIX pada awal  baris, 

     maka dapat kita gunakan ekspresi reguler '^', yaitu:

           ^UNIX

          Dengan  demikian operasi ini akan menemukan  pola  yang 

     dicari di dalam kalimat UNIX adalah sistem operasi.

     5.4.1.3 Ekspresi Reguler '$'

          Ekspresi reguler '$' digunakan untuk mencari pola  pada 

     akhir  dari  tiap  baris. 

          Berdasarkan  contoh pada sub bab sebelumnya, jika  kita 

     ingin  mendapatkan  kata UNIX pada akhir baris,  maka  dapat 

     kita  gunakan  ekspresi  reguler  '$'  dengan  cara  sebagai 

     berikut:

          UNIX$

          Dengan  demikian operasi ini akan menemukan  pola  yang 

     dicari  yaitu di dalam kalimat Sistem terbuka didukung  oleh 

     UNIX.

          Untuk menemukan pola  baris kosong, dapat kita  gunakan 

     gabungan ekspresi reguler '^' dan '$' sebagai berikut:

          ^$

     5.4.1.4 Ekspresi Reguler [...] dan [^...]

          Ekspresi reguler [karakter] digunakan untuk mencocokkan 

     pola   dengan   karakter  sesuai   dengan   jangkauan   yang 

     dicantumkan di dalam kurung siku tersebut, misalnya:

          ------------------------------------------------------

          Eks. Reguler   Arti

          ------------------------------------------------------

          [tT]           cocok terhadap "t"besar atau kecil

          [a-z]          cocok hanya huruf kecil

          [a-zA-Z]       cocok untuk semua huruf besar dan kecil

          [0-9]          cocok untuk bilangan 0 s/d 9

          1[0-9]         cocok untuk bilangan 10 s/d 19

          ------------------------------------------------------

                   Tabel 5.1 Ekpresi reguler [...] 

          Untuk  menyatakan jangkauan yang sebaliknya,  digunakan 

     tanda '^' di dalam kurung siku, contoh:

          ------------------------------------------------------

          Eks. Reguler   Arti

          ------------------------------------------------------

          [^0-9]         cocok bagi non numerik

          [^a-zA-Z]      cocok bagi non huruf/abjad

          ------------------------------------------------------

                   Tabel 5.2 Ekspresi reguler [^...]

     5.4.2 Perintah grep

          Perintah  grep  digunakan untuk mencari  pola  karakter 

     dalam satu atau lebih file. Format umumnya adalah:

          grep pola file1 file2 ....

          Setiap   baris  yang  mengandung  pola  karakter   akan 

     ditampilkan pada standar keluaran. Jika digunakan lebih dari 

     satu file, maka setiap baris akan ditampilkan informasi file 

     yang mengandung pola karakter tersebut.

          $ cat bab1

                           * PENGANTAR *

          shell merupakan program terpenting bagi pemakai UNIX

          karena semua keinginan dan perintah dari pemakai

          akan diterjemahkan oleh shell kepada komputer

          $ grep shell bab1

          shell merupakan program terpenting bagi pemakai UNIX

          akan diterjemahkan oleh shell kepada komputer

          $

          Keluaran  dari  perintah grep di atas adalah  dua  buah 

     baris  yang mengandung kata shell. Jika pola  karakter  yang 

     dicari tidak ada, maka grep tidak akan menampilkan apa-apa.

          $ grep cinta bab1

          $

          Untuk  mengetahui  lokasi  baris  dari  karakter   yang 

     ditemukan dapat kita gunakan pilihan -n.

          $ grep -n shell bab1

          2:shell merupakan program terpenting bagi pemakai UNIX

          4:akan diterjemahkan oleh shell kepada komputer

          $

          Disamping itu, grep dapat pula digunakan untuk  mencari 

     pola karakter pada sejumlah file dalam suatu direktori.

          $ ls

          bab1

          bab2

          bab3

          bab4

          $ grep shell *

          bab1:shell merupakan program terpenting bagi pemakai UNIX

          bab1:akan diterjemahkan oleh shell kepada komputer

          bab3:shell ini disebut Bourne shell

          $

          Terkadang kita hanya ingin melihat nama-nama file  yang 

     mengandung  kata yang kita cari. Untuk itu maka  kita  dapat 

     gunakan pilihan -l.

          $ grep -l shell *

          bab1

          bab3

          $

          Perhatikan contoh berikut:

               grep *  bab1

          tidak  akan  bekerja  dengan  baik  karena  shell  akan 

     terlebih  dahulu mensubstitusikan tanda asterisk (*)  dengan 

     file yang ada pada direktori current dan dilanjutkan  dengan 

     pencarian pada file-file. 

          Untuk  menggunakan pola karakter *, kita dapat  gunakan 

     tanda kutip tunggal sebagai berikut:

          $ grep '*' bab1

                           * PENGANTAR *

          $

          Salah  satu kehandalan dari grep adalah  pola  karakter 

     dapat  diberikan  dalam bentuk  ekspresi  reguler,  sehingga 

     pencarian dapat dilakukan dengan luwes.

       ----------------------------------------------------------

       perintah

       ----------------------------------------------------------

       grep '[A-Z]' file           tampilkan baris yang berisi 

                                   huruf besar

       grep '[0-9]' file           tampilkan baris yang berisi

                                   angka

       grep '[A-Z]...[0-9]' file   tampilkan baris yang berisi

                                   5 karakter dengan diawali

                                   huruf besar dan diakhiri angka

       ----------------------------------------------------------

                         Tabel 5.3 Perintah grep

          Disamping mencari baris yang berisi pola karakter  yang 

     sesuai, grep dapat pula mencari baris yang tidak  mengandung 

     pola karakter, yaitu dengan menggunakan pilihan -v.

          $ grep -v shell bab1      (cari yang tidak berisi shell)

                           * PENGANTAR *

          karena semua keinginan dan perintah dari pemakai

          $ grep -v '*' bab1

          shell merupakan program terpenting bagi pemakai UNIX

          karena semua keinginan dan perintah dari pemakai

          akan diterjemahkan oleh shell kepada komputer

          $

     5.4.3 Perintah fgrep

          Perintah  fgrep serupa dengan perintah  grep.  Perintah 

     fgrep  sering  diartikan sebagai fast grep atau  fixed  grep 

     karena proses perintah ini lebih cepat dibandingkan grep dan 

     hanya  menangani  untaian karakter yang pasti  sebagai  pola 

     yang dicari. 

          $ fgrep shell bab1

          shell merupakan program terpenting bagi pemakai UNIX

          akan diterjemahkan oleh shell kepada komputer

          $

          Penting  diingat  bahwa  perintah  fgrep  tidak   dapat 

     memproses ekspresi reguler. 

          $ fgrep "^shell" bab1 

          $

          Perintah  fgrep tidak mengartikan karakter '^' sebagai 

     ekspresi  reguler,  yang  berarti awal  dari  baris  untaian 

     karakter, melainkan semata hanya karakter '^' saja.

     5.4.4 Perintah egrep

          Perintah  egrep serupa dengan perintah  grep.  Perintah 

     egrep   sering  diartikan  sebagai  extended  grep,   karena 

     perintah   ini  merupakan  perluasan  dari  perintah   grep. 

     Pada   egrep  seluruh  ekspresi  reguler  yang   ada   dapat 

     dipergunakannya. 

          $ grep 'Sally (White|Smith)' peserta 

          $

          Perintah  grep  gagal menggunakan ekspresi  reguler  di 

     atas.  Perhatikan bahwa egrep mampu  menggunakan  eksekpresi 

     reguler tersebut.

          $ egrep 'Sally (White|Smith)' peserta

          Sally White

          Sally Smith

          $

          Tapi awas, jangan disamakan dengan perintah berikut:

          $ egrep 'Sally White|Smith' peserta

          Sally White

          Sally Smith

          Henry Smith

          $

          Karena pada cara kedua ini berarti carilah yang  sesuai 

     dengan  pola  Sally  White atau Smith.  Padahal  pada  egrep 

     pertama dimaksudkan mencari Sally White atau Sally Smith.

     5.5 MEMBANDINGKAN FILE

     5.5.1 Perintah uniq

          Perintah uniq digunakan untuk membandingkan antar baris 

     data  yang  berurutan di dalam sebuah  file.  Perintah  uniq 

     akan  mendeteksi  adanya duplikasi baris data  yang  terjadi 

     pada  sebuah file, dengan catatan bahwa  duplikasi  tersebut 

     harus berurutan.

          $ cat band

          Queen

          Beatles

          Sepultura

          Slank

          Toto

          Europe

          Beatles

          $

          Kita  lihat  bahwa Beatles muncul dua kali  dalam  file 

     band.   Dengan  perintah  uniq,  kita  dapat   menghilangkan 

     duplikasi yang terjadi.

          $ uniq band

          Queen

          Beatles

          Sepultura

          Slank

          Toto

          Europe

          Beatles

          $

          Proses  uniq  di  atas  tidak  berhasil   menghilangkan 

     duplikasi  yang terjadi, mengapa ? Hal ini disebabkan  bahwa 

     baris  data yang duplikasi (Beatles) tidak berurutan.  Untuk 

     itu  maka  kita perlu melakukan proses  pengurutan  terlebih 

     dahulu.

          $ sort band 

          Beatles

          Beatles

          Europe

          Queen

          Sepultura

          Slank

          Toto

          $ sort band | uniq

          Beatles                   (data yang duplikasi hilang)

          Europe

          Queen

          Sepultura

          Slank

          Toto

          $

          Perintah  uniq dapat juga hanya menampilkan  data  yang 

     terduplikasi saja, yaitu dengan menggunakan pilihan -d.

          $ sort band | uniq -d     (tampilkan yang terduplikasi)

          Beatles

          $

          Dengan   pilihan  -c  kita  dapat   melihat   banyaknya 

     pemunculan masing-masing baris data dalam file tersebut.

          $ sort band | uniq -c

             2 Beatles

             1 Europe

             1 Queen

             1 Sepultura

             1 Slank

             1 Toto

          $

     5.5.2 Perintah diff

          Perintah diff dipergunakan untuk membandingkan isi  dua 

     buah file teks. Secara umum formatnya adalah:

          diff filelama filebaru

          dimana filelama adalah file asli. filebaru adalah  file 

     yang  telah diperbaharui. 

          Sebelum  dijelaskan mengenai perintah diff,  perhatikan 

     contoh data yang akan digunakan pada pembahasan kali ini.

          $ cat peserta.old

          Maryann Clark         101

          Sally Smith           123

          Jane Bailey           121

          Jack Austin           120

          Steve Daniels         111

          Sylvia Dawson         110

          Henry Morgan          112

          Hank Parker           114

          Charlie Smith         122

          Bill Williams         100

          $ cat peserta.new

          Maryann Clark         101

          Sally White           123

          Jane Bailey           121

          Jack Austin           120

          Steve Daniels         111

          Sylvia Dawson         110

          Hank Parker           114

          Charlie Smith         122

          Bill Williams         100

          James Walker          112

          $

          Kedua  file  tersebut  serupa  tapi  tak  sama.   Untuk 

     mencari   perbedaan-perbedaan  pada  kedua   file   tersebut 

     dapat kita gunakan perintah diff sebagai berikut:

          $ diff peserta.old peserta.new

          2c2

          < Sally Smith         123

          ---

          > Sally White         123

          7d6

          < Henry Morgan        112

          10a10

          > James Walker        112

          $

          Keluaran  dari  perintah diff  di  atas  memperlihatkan 

     bahwa terdapat 3 buah perbedaan diantara keduanya, yaitu:

          o Baris kedua dari file lama telah diubah tetapi  tetap 

            pada  baris dua (ditunjukkan dengan 2c2). Versi  lama 

            ditandai  dengan karakter '<' dan versi  baru  dengan 

            karakter    '>'.   Garis   '---'   digunakan    untuk 

            membandingkan  perubahan sekaligus  memisahkan  baris 

            atas sebagai versi lama dan baris bawah sebagai versi 

            baru.

          o Baris  ketujuh  dari file lama  dihapus  (ditunjukkan 

            dengan 7d6).

          o Baris  kesepuluh ditambahkan data baru  tetapi  tetap 

            pada  baris  kesepuluh  (ditunjukkan  dengan  10a10), 

            karena  sebelumnya telah terjadi penghapusan  sebaris 

            data.

          Jika  kita  menyebutkan  file  lama  dan  file  barunya 

     terbalik, maka hasilnya akan berbeda.

          $ diff peserta.new peserta.old

          2c2

          < Sally White         123

          ---

          > Sally Smith         123

          6a7

          > Henry Morgan        112

          10d10

          < James Walker        112

          $

          Dengan  menggunakan  pilihan  -e  kita  dapat   membuat 

     laporan  perbedaan  antar file, dimana  berdasarkan  laporan 

     tersebut   dapat   diolah   oleh  editor   teks   ed   untuk 

     memperbaharui file lama menjadi file baru. Atau secara mudah 

     dikatakan  bahwa  laporan  perbedaan  antar  file   tersebut 

     merupakan  program  bagi editor teks ed untuk  membuat  file 

     lama menjadi file baru.

          $ diff -e peserta.old peserta

          10a

          James Walker          112

          .

          7d

          2c

          Sally White           123

          .

          $

          Keluaran  di  atas  menyatakan  perintah-perintah  bagi 

     editor teks ed. Jika keluaran dari perintah diff -e di  atas 

     dikirim perintah editor teks ed, hasilnya sebagai berikut:

          $ diff -e peserta.old peserta > ubah

          $ ed - peserta.old < ubah

          Maryann Clark         101

          Sally White           123

          Jane Bailey           121

          Jack Austin           120

          Steve Daniels         111

          Sylvia Dawson         110

          Hank Parker           114

          Charlie Smith         122

          Bill Williams         100

          James Walker          112

          $

          Namun file lama tidak berubah. Untuk mengubah file lama 

     menjadi  file  baru, kita harus  menambahkan  perintah  dari 

     editor   teks  ed  yang  berfungsi  untuk  menyimpan   hasil 

     perubahan (w) dan keluar proses (q) pada file ubah. 

          $ echo w peserta.ubah >> ubah (simpan di peserta.ubah)

          $ echo q >> ubah

          $ cat ubah

          10a

          James Walker          112

          .

          7d

          2c

          Sally White           123

          .

          w peserta.ubah

          q

          $ ed peserta.old < ubah

          315                           

          $ diff peserta.ubah peserta.new

          $                              (tidak ada perbedaan !)

          Pada  contoh  di  atas,  hasil  pembaharuan  file  lama 

     dikirim ke file peserta.ubah. Jika w tidak diikuti nama file 

     maka perubahan dilakukan pada file itu sendiri. 

          Para   pembuat  program  di  UNIX  sering   menggunakan 

     utilitas ini sebagai fasilitas untuk merevisi program.

     5.5.3 Perintah sdiff

          Perintah sdiff serupa dengan perintah diff, hanya  saja 

     perbedaan ditampilkan berdampingan. Karena berdampingan maka 

     akan  membutuhkan lebar layar yang secukupnya  (default  130 

     kolom). Untuk mengatur lebar layar digunakan pilihan -w.

          $ sdiff -w 65 peserta.old peserta.new

          Maryann Clark         101     Maryann Clark         101

          Sally Smith           123  |  Sally White           123

          Jane Bailey           121     Jane Bailey           121

          Jack Austin           120     Jack Austin           120

          Steve Daniels         111     Steve Daniels         111

          Sylvia Dawson         110     Sylvia Dawson         110

          Henry Morgan          112  <

          Hank Parker           114     Hank Parker           114

          Charlie Smith         122     Charlie Smith         122

          Bill Williams         100     Bill Williams         100

                                     >  James Walker          112

          $

          Seperti pada perintah diff, perbedaan antara sisi  yang 

     berisi  file lama dan file baru digunakan karakter '|',  '<' 

     dan '>'.

          Dengan  pilihan  -l, hanya baris pada sisi  kanan  yang 

     berbeda yang akan ditampilkan. Sementara itu sis kiri  tetap 

     ditampilkan seluruhnya.

          $ sdiff -w 65 -l peserta.old peserta.new

          Maryann Clark         101

          Sally Smith           123  |  Sally White           123

          Jane Bailey           121

          Jack Austin           120

          Steve Daniels         111

          Sylvia Dawson         110

          Henry Morgan          112  <  

          Hank Parker           114

          Charlie Smith         122

          Bill Williams         100

                                     >  James Walker          112

          $

          Jika  diinginkan,  dapat juga  hanya  baris-baris  yang 

     berbeda pada keduanya saja yang ditampilkan.

          $ sdiff -w 65 -s peserta.old peserta.new

          2c2

          Sally Smith           123  |  Sally White           123

          7d6

          Henry Morgan          112  <  

          10a10

                                     >  James Walker          112

          $

          Dengan  pilihan  -o yang diikuti nama file  baru,  kita 

     dapat memasukkan baris kiri atau kanan yang berbeda ke dalam 

     file baru tersebut. Untuk itu sistem akan memberikan  prompt 

     khusus %. Pada prompt tersebut kita diijinkan untuk  memilih 

     sisi  kiri (l) atau sisi kanan (r) yang akan  dimasukkan  ke 

     dalam file baru.

          $ sdiff -w 65 -s -o old_new peserta.old peserta.new

          2c2

          Sally Smith           123  |  Sally White           123

          % l

          7d6

          Henry Morgan          112  <  

          % r

          10a10

                                     >  James Walker          112

          % r

          $

          maka hasilnya adalah sebagai berikut:

          $ cat old_new

          Maryann Clark         101

          Sally Smith           123

          Jane Bailey           121

          Jack Austin           120

          Steve Daniels         111

          Sylvia Dawson         110

          Hank Parker           114

          Charlie Smith         122

          Bill Williams         100

          James Walker          112

          $

     5.5.4 Perintah cmp

          Berbeda   dengan  perintah  perintah  pembanding   file 

     sebelumnya  yang berorientasi pada file teks,  perintah  cmp 

     akan  membandingkan  dua  buah file secara  byte  per  byte. 

     Laporan  yang  diberikan  berupa byte  dan  nomor  barisnya, 

     tempat ditemukan perbedaan yang pertama antar file tersebut. 

          $ cmp peserta.old peserta.new

          peserta.old peserta.new differ: char 26, line 2

          $ 

          Jika kedua file tersebut sama, maka perintah cmp  tidak 

     akan mengeluarkan informasi apa-apa.

          $ cp peserta.old /tmp

          $ cp peserta.old /tmp/peserta.old2

          $ cmp /tmp/peserta.old /tmp/peserta.old2

          $

          Dengan  demikian  terlihat bahwa  perintah  cmp  kurang 

     cocok  untuk membandingkan file teks. Jika kita hanya  ingin 

     mengetahui  apakah file yang kita bandingkan  berbeda,  maka 

     perintah  cmp  sangat cocok untuk  digunakan,  karena  dapat 

     menghasilkan informasi tentang perbedaan dengan cepat.

     5.6 MENCARI FILE 

          Sering terjadi kasus dimana kita menemukan sebuah  file 

     yang  diketahui namanya tetapi tidak diketahui  letaknya  di 

     dalam  sistem  direktori. Untuk mencari secara  manual  akan 

     menghabiskan waktu yang cukup lama. Utilitas yang  menangani 

     masalah ini adalah perintah find.

          Perintah  find akan mencari file melalui  setiap  jalur 

     direktori,   dengan  dimulai  dari  direktori   yang   telah 

     ditentukan hingga ke sub-sub direktorinya.

          Perintah  find berikut ini akan menampilkan semua  file 

     yang  bernama core berikut lokasinya dalam sistem  direktori 

     yang telah ditentukan. Pencarian dimulai dari direktori /tmp 

     dan  dilanjutkan dengan direktori /usr/mhs/denny. Pilihan  -

     name  yang  diikuti nama file adalah menunjukkan  nama  file 

     yang  akan  dicari. Pilihan -print akan mencetak  nama  file 

     dengan nama jalur lengkapnya ke layar.

          $ find  /tmp /usr/mhs/denny -name core -print

          /tmp/denny/core

          /usr/mhs/denny/program/core

          /usr/mhs/denny/doc/core

          $

          Jika kita tidak mengetahui secara pasti nama-nama  file 

     yang  kita  cari, kita dapat menggunakan  karakter  wildcard 

     sebagai berikut:

          $ find /usr/mhs/denny -name "*.old" -print

          /usr/mhs/denny/tatix.old

          /usr/mhs/denny/program/prog1.old

          /usr/mhs/denny/program/prog2.old

          /usr/mhs/denny/tmp/bacaaku.old

          /usr/mhs/denny/tmp/passwd.old

          /usr/mhs/denny/tmp/sistem.old

          $

          Kita   dapat  juga  menentukan  file  yang  kita   cari 

     berdasarkan  waktu akses terakhir, yaitu dengan  menggunakan 

     pilihan -atime. Misalnya file-file yang memiliki waktu akses 

     terakhir lebih dari  14 hari.

          $ find /usr/mhs/denny -name "*.old" -atime +14  -print

          /usr/mhs/denny/tatix.old

          /usr/mhs/denny/program/prog1.old

          /usr/mhs/denny/tmp/sistem.old

          $

          Karakter '+' yang mendahului angka 14 menyatakan  lebih 

     dari  14  hari.  Jika diinginkan kurang dari  14  hari  maka 

     digunakan karakter '-'.

          $ find /usr/mhs/denny -name "*.old" -atime -14 -print

          /usr/mhs/denny/program/prog2.old

          /usr/mhs/denny/tmp/bacaaku.old

          /usr/mhs/denny/tmp/passwd.old

          $

          Logika  OR  dan AND berlaku juga pada  untaian  pilihan 

     pada perintah find, yaitu -a untuk AND dan -o untuk OR. Jika 

     logika   tidak   disebutkan,   secara   implisit   dikatakan 

     menggunakan AND.

          $ find /usr/mhs/denny \( -name core -o name "*.old" \) -print

          /usr/mhs/denny/tatix.old

          /usr/mhs/denny/doc/core

          /usr/mhs/denny/program/core

          /usr/mhs/denny/program/prog1.old

          /usr/mhs/denny/program/prog2.old

          /usr/mhs/denny/tmp/bacaaku.old

          /usr/mhs/denny/tmp/passwd.old

          /usr/mhs/denny/tmp/sistem.old

          $

          Disamping sekedar mencetak nama file yang kita cari  ke 

     layar terminal , perintah find dapat pula melakukan  sesuatu 

     terhadap  file tersebut, yaitu dengan menggunakan pilihan  -

     exec.  Contoh kita akan menghapus file *.old pada  direktori 

     /tmp yang waktu akses terakhirnya 10 hari yang lalu.

          $ find /tmp -name "*.old" -a atime +10 -exec rm {} \;

          $

          Karakter  '{}' akan disubstitusikan oleh perintah  find 

     dengan nama file yang memenuhi kondisi yang telah ditentukan 

     pada pilihan. Perintah yang dieksekusi harus diakhiri dengan 

     sebuah semicolon  '\;'.

          Jika    diinginkan    konfirmasi    sebelum    eksekusi 

     dilaksanakan  terhadap  file  yang  memenuhi  kondisi,  maka 

     digunakan pilihan -ok sebagai berikut:

          $ find /tmp -name "*.old" -a atime +10 -ok rm {} \;

          < rm ... /usr/mhs/denny/tatix.old >? y

          < rm ... /usr/mhs/denny/program/prog1.old >? n

          < rm ... /usr/mhs/denny/tmp/sistem.old >?

          $

          Jika  diketikkan selain karakter y maka  eksekusi  akan 

     dibatalkan.

     5.7 MENGHITUNG BILANGAN

          UNIX  memiliki  perintah yang dapat  berfungsi  sebagai 

     kalkulator  sederhana  yang  cukup  ampuh  dalam   melakukan 

     penghitungan bilangan, yaitu perintah bc. Cara penggunaannya 

     adalah sebagai berikut:

          $ bc

          9 + 8 

          16

          2 + 3 - 1

          4

          ^D                       (akhir operasi penghitungan)

          $

          Perintah   bc  ini  mengenal  operasi-operasi   sebagai 

     berikut:

          *    perkalian

          /    pembagian

          ^    pangkat

          +    penjumlahan

          -    pengurangan

          Perkalian  dan  pembagian  dikerjakan  terlebih  dahulu 

     sebelum  penjumlahan dan pengurangan. Untuk mengubah  urutan 

     pengerjaan digunakan karakter '( ... )'.

          $ bc

          12.25 * 2

          24.50

          2^6

          64

          2 + 5 * 3

          30

          (2 + 5) * 3

          21

          18 / 6

          3

          9 / 2                        

          4                                       (kemana 0.5 ?)

          ^D

          $

          Operasi  di atas tidak menghasilkan pecahan,  akibatnya 

     operasi  pembagian  9  oleh  2  dibulatkan  ke  bawah.  Jika 

     diinginkan,   kita   dapat   menentukan   beberapa   desimal 

     dibelakang koma dengan menggunakan scale sebagai berikut:

          $ bc

          scale=3

          9 / 2

          4.500

          1 / 8

          0.125

          ^D

          $

          Untuk menyimpan hasil perhitungan sementara, kita dapat 

     menyimpan  ke  dalam memori  yang  diidentifikasikan  dengan 

     huruf a-z saja. Kita dapat menggunakan nilai yang  tersimpan 

     di dalamnya pada rangkaian ekspresi sebagai berikut:

          $ bc

          a=2 + 5 * 10

          a

          100

          a * 2

          200

          ^D

          $

          Karena  perintah bc merupakan filter, maka  kita  dapat 

     mengirim file berisi perhitungan untuk diselesaikan  sebagai 

     berikut:

          $ cat hitung

          300 * 2

          6 / 2 + ( 4 - 2) * 7

          1 * 2 * 3 * 4

          1000 - 5000

          $ cat hitung | bc

          600

          17

          24

          -4000

          $

BAB 6

EDITOR TEKS

          Setiap  sistem  operasi membutuhkan editor  teks  untuk 

     mengedit shell, program dan teks lainnya. Ada beberapa jenis 

     editor teks pada UNIX, antara lain:

          - editor berorientasi baris, misalnya ed dan  ex

          - editor berorientasi layar, misalnya vi dan emacs

          - editor berorientasi stream, misalnya sed

          Pada  bab ini lebih mengkhususkan  pembahasan  mengenai 

     editor  teks  vi.  Namun demikian pada akhir  bab  ini  akan 

     disinggung  mengenai penggunaan editor baris  ex  (khususnya 

     pemanfaatan di dalam vi) dan editor stream  sed.  Pembahasan 

     akan mencakup mengenai:

          - mulai menggunakan vi

          - mengatur gerakan kursor dan gerakan layar

          - memasukkan teks

          - menghapus dan mengganti teks

          - mencari teks

          - memindahkan teks

          - menggunakan editor baris ex pada editor teks vi

          - menggunakan editor stream sed

     6.1 MULAI MENGGUNAKAN vi

          Editor  standar yang berorientasi layar  yang  dimiliki 

     oleh UNIX adalah vi. Editor vi memiliki dua mode, yaitu: 

          o Mode perintah 

            Kebanyakan  perintah  yang diberikan pada  vi  berupa 

            untaian  karakter yang sangat pendek, biasanya  hanya 

            berupa  satu karakter, seperti a, i, o,  c.  Perintah 

            ini  tidak  akan tampak pada  layar  terminal  ketika 

            diketik,  hanya  akan terlihat hasilnya.  Kita  tidak 

            perlu  mengetikan ENTER setelah memasukkan  perintah-

            perintah tersebut.

            Untuk lebih meningkatkan kehebatan vi dalam  mengolah 

            teks,   editor  ini didukung pula oleh editor  ex  di 

            dalamnya,  sehingga  kita  dapat  memanipulasi   data 

            dengan  perintah-perintah  yang  dimiliki  oleh   ex. 

            Perintah-perintah  pada ex senantiasa didahului  oleh 

            karakter titik dua yang akan tampak pada dasar  layar 

            ketika   diketikkan.   Berbeda   dengan    pengetikan 

            perintah-perintah  pada  vi, ENTER  harus  diketikkan 

            setiap selesai mengetik perintah-perintah ex.

          o Mode pemasukan teks

            Jika  pada  mode perintah diketikkan  perintah  untuk 

            memasukan  teks misalnya sisip (insert)  atau  tambah 

            (append),maka  kita akan berada pada  mode  pemasukan 

            teks dimana semua yang kita ketik akan ditampilkan di 

            layar terminal dan akan menjadi bagian teks yang kita 

            edit.  Pengetikan ESC akan mengakhiri mode  pemasukan 

            teks dan kembali ke mode perintah.

          Untuk  mulai menggunakan vi, gunakan  perintah  sebagai 

     berikut:

          $ vi coba

          dimana  coba adalah nama file.  Perintah tersebut  akan 

     menghasilkan layar seperti ini:

          -

          ~

          ~

          ~

          ~

          ~

          ~

          ~

          ~

          "coba" [New File]

                              Gambar 6.1 Layar vi

          Pada  bagian  atas  akan terlihat  sebuah  kursor  yang 

     menunjukkan lokasi awal pengetikkan. Pada bagian bawah  akan 

     terlihat baris status vi atau pesan kesalahan.

          Mode  awal ketika kita masuk ke dalam editor vi  adalah 

     mode  perintah. Untuk mulai memasukkan teks perlu  dilakukan 

     sebuah perintah memasukan teks dengan mengetikkan:

          i

          Sekarang kita telah berada di dalam mode  pemasukan dan 

     semua  yang  diketikan  akan  tampil  pada  layar  terminal. 

     Masukkan  teks  berikut ini dan akhiri setiap  baris  dengan 

     mengetikkan ENTER.

          satu 

          dua

          tiga

          empat

          lima

          Tekanlah  ESC  untuk mengakhiri  mode  pemasukan  teks, 

     dengan demikian kita kembali ke mode perintah. 

          Selanjutnya  jika  kita ingin keluar dari  vi    dengan 

     sebelumnya  menyimpan seluruh teks ke dalam file maka  dapat 

     digunakan perintah-perintah berikut:

          ZZ

          Atau menggunakan perintah dari ex sebagai berikut:

          :wq

          atau 

          :x

          Jika  kita  ingin  keluar  dari  vi  dan  tidak   ingin 

     menyimpan file yang kita edit, maka dapat digunakan perintah 

     ex sebagai berikut: 

          :q!

          Awas  jangan  lupa  mengetikkan  ENTER  pada  perintah-

     perintah ex.

     6.2 MENGATUR GERAKAN KURSOR DAN GERAKAN LAYAR

          Pada  dasarnya  gerakan kursor dapat  dilakukan  dengan 

     tombol  panah  tetapi kadang-kadang sukar  dilakukan  karena 

     posisi  tombol  pada  keyboard  terlalu  jauh  atau  mungkin 

     set up terminalnya kurang mendukung. Untuk mengatasi hal ini 

     kita  dapat  digunakan h, j, k dan l  yang  dapat  berfungsi 

     sebagai tombol panah sebagai berikut:

                          ^

                         / \

                        /_k_\

                     /|  | |  |\

                    / +--+ +--+ \ 

                   < h         l >

                    \ +--+ +--+ /

                     \| _| |_ |/

                        \ j /

                         \ /

                          v            

            Gambar 6.2 Gerakan kursor 1 karakter

          Disamping  pergerakan  kursor  dalam  penambahan   satu 

     karakter, kita dapat menggerakkan ke obyek teks tertentu.

          ---------------------------------------

          Obyek teks                    Karakter

          ---------------------------------------

          Kata berikutnya               w

          Akhir baris sekarang          $

          Kalimat sebelumnya            (

          Kalimat berikutnya            )

          Paragraf sebelumnya           {

          Paragraf berikutnya           }

          Bagian sebelumnya             [[

          Bagian berikutnya             ]]

          ---------------------------------------

                   Tabel 6.1 Obyek teks

          Untuk  memperjelas maksud di atas,  dengan  menggunakan 

     cara  yang telah diajarkan pada sub bab sebelumnya,  marilah 

     kita membuat file coba2 yang berisi teks berikut:

          Kelompok musik legendaris The Beatles terdiri dari Jhon 

          Lenon, Paul McCartney, Ringo Star dan George Harrison.

          Kelompok  ini  telah membubarkan diri dan  tidak  ingin 

          disatukan  kembali. Upaya penyatuan ini  semakin  tidak 

          mungkin   dengan   meninggalnya   Jhon   lenon   akibat 

          pembunuhan didepan apartemennya.

          Dalam mode perintah, gerakkan kursor ke spasi  diantara 

     'Kelompok' dan 'musik' pada baris pertama. Sekarang  cobalah 

     perintah:

          3w

          Kursor  akan bergerak 3 kata ke kanan dan  berhenti  di 

     awal  kata tersebut, yaitu pada huruf 'T' dari  kata  'The'. 

     Sekarang ketiklah :

          }

          Kursor  akan  bergerak ke  awal  paragraf  selanjutnya, 

     yaitu baris kosong antar paragraf. Selanjutnya ketiklah:

          1(

          Kursor akan bergerak ke awal dari satu kalimat  sebelum 

     sekarang, yaitu  'K' dari kata 'Kelompok' pada baris pertama

     dalam paragraf pertama. Kemudian ketiklah:

          $

          kursor akan bergerak ke akhir baris dari baris pertama.

          Disamping  pergerakan  kursor  berdasarkan  obyek  teks 

     tertentu,  kita dapat pula menggerakkan  kursor  berdasarkan 

     posisi  absolut layar terminal.  Perintah-perintah  tersebut 

     dapat didahului oleh bilangan penentu lokasi.

          -----------------------------------------------------

          Perintah   Bergerak ke

          -----------------------------------------------------

          H          Karakter pertama pada baris pertama layar

          M          Karakter pertama pada baris tengah layar

          L          Karakter pertama pada baris terbawah layar

          -----------------------------------------------------

                 Tabel 6.2 Gerakan kursor absolut layar

          Disamping menggerakkan kursor disekeliling layar termi-

     nal, kita dapat pula menggerakkan teks pada layar. Untuk itu 

     maka  kita anggap bahwa layar adalah jendela yang  digunakan 

     untuk  melihat  file teks. Kita dapat  menggerakkan  jendela  

     disekitar  file untuk melihat bagian lainnya. Terdapat  tiga 

     cara untuk menggerakkan jendela pada layar yaitu: 

          o roll

            Perintah  roll  akan menggerakkan layar  setiap  kali 

            sebanyak  satu  baris, ke atas atau ke  bawah.  Untuk 

            menggerakkan  roll  ke  atas satu  baris  dalam  file 

            digunakan  perintah ^Y. Penampakan pada layar  adalah 

            bergerak turun. Untuk menggerakkan roll ke atas  satu 

            baris  dalam file digunakan perintah  ^E.  Penampakan 

            pada layar adalah bergerak naik. 

          o scroll 

            Perintah  scroll  akan  menggerakkan  jendela   layar 

            sebanyak  setengah jendela dan meninggalkan  beberapa 

            dari teks sebelumnya pada layar untuk  kesinambungan.  

            Untuk  mengerakkan scroll ke atas digunakan  perintah 

            ^U  sedangkan ke bawah ^D. Kedua perintah  ini  boleh 

            didahului  sebuah  bilangan yang  menyatakan   jumlah 

            baris  yang  bergerak bila  dilakukan  scrolling.  vi 

            kemudian  akan  mengingat jumlah  tersebut  dan  akan 

            digunakan untuk scrolling berikutnya.

          o page

            Perintah  page akan menggerakkan layar sebanyak  satu 

            ukuran jendela. Perintahnya untuk page maju adalah ^F 

            dan  page mundur adalah ^B. Kedua perintah ini  boleh 

            didahului  sebuah  bilangan  yang  menyatakan  jumlah 

            perintah maju atau mundur diulang. Misalnya 3^F  akan 

            membawa kita tiga halaman lebih maju dalam file.

          Untuk  lebih mendalaminya Anda harus mencoba  perintah-

     perintah  tersebut  sendiri. Tanpa  mencoba  maka  perintah-

     perintah tersebut akan terlihat sangat merepotkan.

     6.3 MENGEDIT TEKS

          Yang   dimaksud  mengedit  teks  disini  adalah   upaya 

     menambah, menghapus dan mengganti teks. Untuk melakukan  hal 

     tersebut digunakan beberapa perintah pada mode perintah. 

          Pada  sub  bab sebelumnya telah  diberikan  cara  untuk 

     memasukkan  teks ke dalam file kosong dengan  perintah  'i'. 

     Perintah   'i'  digunakan  untuk  menyisipkan  teks.   Untuk 

     lebih jelas mari kita buka kembali file coba.

          satu 

          dua

          tiga

          empat

          lima

          Pada mode perintah, gerakkan kursor hingga berada  pada 

     huruf 't' pada kata satu. Kemudian ketikkan:

          i

          Kini  kita  berada pada mode pemasukan.  Ketikkan  teks 

     berikut:

          11111

          Tekan  ESC  untuk  mengakhiri  proses  penyisipan   dan 

     kembali ke mode perintah. Sekarang layar akan tampak seperti 

     dibawah ini:

          sa11111tu 

          dua

          tiga

          empat

          lima

          Perintah 'i' akan menyisipkan teks sebelum karakter  di 

     bawah  kursor. 

          Sekarang  gerakkan  kursor  ke  huruf   'a'  dari  kata 

     'tiga'.  Kita  dapat menyisipkan teks pada awal  baris  dari 

     baris sekarang tanpa harus menggerakkan kursor ke awal baris 

     dari   baris  sekarang,  tetapi  cukup  dengan   menggunakan 

     perintah 'I'.

          I

          kemudian ketikkan:

          AWAL

          Tekan  ESC untuk mengakhiri proses penyisipan  teks  di 

     awal baris dari baris sekarang dan kembali ke mode perintah. 

     Sekarang layar akan tampak seperti dibawah ini:

          sa11111tu 

          dua

          AWALtiga

          empat

          lima

          Kita dapat pula menyisipkan  teks  sesudah   karakter 

     dibawah  kursor  dengan menggunakan perintah  'a'.  Misalkan 

     kita  ingin  menambahkan teks diakhir baris,  yaitu  sesudah 

     kata  'sa11111tu',  maka kita harus menggerakkan  kursor  ke 

     huruf 'u' dan mengetikan perintah:

          a

          Kemudian ketikkan:

          AKHIR

          Tekan  ESC untuk mengakhiri proses penambahan teks  dan 

     kembali ke mode perintah. Sekarang layar akan tampak seperti 

     dibawah ini:

          sa11111tuAKHIR 

          dua

          AWALtiga

          empat

          lima

          Dengan  perintah  'i' kita tak dapat  menambahkan  kata 

     'AKHIR'   pada   kata  'sa11111tu',  karena   perintah   'i' 

     menyisipkan pada teks sebelum karakter dibawah kursor.

          Sekarang  gerakkan  kursor  ke  huruf   't'  dari  kata 

     'tiga'.  Jika kita ingin menambahkan teks pada  akhir  baris 

     dari   baris   sekarang,   dapat   dilakukan   tanpa   harus 

     menggerakkan  kursor  ke akhir baris  dari  baris  sekarang, 

     tetapi cukup dengan menggunakan perintah 'A'.

          A

          kemudian ketikkan:

          33333

          Tekan  ESC untuk mengakhiri proses penambahan  teks  di 

     akhir  baris  dari  baris  sekarang  dan  kembali  ke   mode 

     perintah. Sekarang layar akan tampak seperti dibawah ini:

          sa11111tuAKHIR 

          dua

          tiga33333

          empat

          lima

          Terkadang  kita  ingin menyisipkan  teks  baru  dibawah 

     atau diatas baris teks sekarang. Untuk itu gunakan  perintah 

     'o' untuk menyisipkan teks baru dibawah baris teks  sekarang 

     dan  perintah 'O' untuk menyisipkan teks baru di atas  baris 

     sekarang. Misalkan kini kita berada pada huruf 'p' dari kata 

     'empat', ketikkan:

          o

          Kemudian ketikkan:

          DI BAWAH EMPAT

          Tekan  ESC untuk mengakhiri proses penyisipan  teks  di 

     bawah baris sekarang dan kembali ke mode perintah.  Sekarang 

     layar akan tampak seperti dibawah ini:

          sa11111tuAKHIR 

          dua

          tiga33333

          empat

          DI BAWAH EMPAT

          lima

          Untuk   mengubah  teks  yang  telah  dimasukkan   dapat 

     digunakan beberapa cara. Perintah 'r' akan mengubah per satu 

     karakter.  Jika ingin diganti lebih dari satu karakter  maka 

     dapat digunakan perintah 'R'. Setelah mengetikkan 'R',  maka 

     apa saja yang diketikkan hingga ESC akan mengubah teks  yang 

     dilewatinya.  Misalnya kita ingin mengubah  'BAWAH'  menjadi 

     'bawah',  maka kita harus menggerakkan kursor ke  huruf  'B' 

     dan mengetik:

          R

          kemudian ketikkan:

          bawah

          Tekan  ESC untuk mengakhiri proses pengubahan teks  dan 

     kembali ke mode perintah. Sekarang layar akan tampak seperti 

     dibawah ini:

          sa11111tuAKHIR 

          dua

          tiga33333

          empat

          DI bawah EMPAT

          lima

          Perintah 'R' akan menimpa atau overwrite karakter  yang 

     dilewati. Jika diinginkan pengubahan pada beberapa  karakter 

     dengan  karakter  lain  yang  lebih  panjang  tanpa  menimpa 

     karakter  yang  tidak  berhubungan,  maka  dapat   digunakan 

     perintah   substitusi  dengan  's'.  Misalkan   kita   ingin 

     mengganti 'tu' pada kata 'sa11111tuAKHIR' dengan 'one'  maka 

     kita harus menggerakkan kursor ke huruf 't' dan ketikkan:

          2s

          diikuti dengan:

          one

          Tekan  ESC untuk mengakhiri proses substitusi teks  dan 

     kembali ke mode perintah. Sekarang layar akan tampak seperti 

     dibawah ini:

          sa11111oneAKHIR 

          dua

          tiga33333

          empat

          DI bawah EMPAT

          lima

          Untuk  menghapus teks ada beberapa cara.  Perintah  'x' 

     akan menghapus satu karakter tepat dibawah kursor.  Misalnya 

     kita  akan  menghapus 'd' dari kata 'dua', maka  kita  harus 

     menggerakkan kursor ke huruf  'd' dan mengetikkan:

          x

          Sekarang layar akan tampak seperti dibawah ini:

          sa11111oneAKHIR 

          ua

          tiga33333

          empat

          DI bawah EMPAT

          lima

          Perintah  'x' dapat didahului oleh  bilangan.  Misalkan 

     sekarang kursor berada pada huruf 'a' pada kata 'tiga33333'.

          6x

          Sekarang layar akan tampak seperti dibawah ini:

          sa11111oneAKHIR 

          ua

          tig

          empat

          DI bawah EMPAT

          lima

          Perintah  'X'  bekerja seperti  'x',  tetapi  menghapus 

     karakter yang berada disebelah kiri kursor. 

          Cara penghapusan teks lainnya adalah dengan menggunakan 

     perintah 'd', cara ini akan menghapus berdasarkan obyek teks 

     yang telah ditentukan. Perintah 'd' yang diikuti spesifikasi 

     obyek  akan  menghapus karakter yang  terdapat  pada  posisi 

     kursor   sekarang  sampai  dengan  obyek  yang   disebutkan. 

     Misalnya  kita  berada  diantara  'DI'  dan  'bawah  EMPAT', 

     kemudian akan menghapus 2 kata berikutnya sesudah 'DI'  maka 

     akan digunakan perintah '2dw'. 

          2dw

          Sekarang layar akan tampak seperti ini:

          sa11111oneAKHIR 

          ua

          tig

          empat

          DI 

          lima

          Perintah  'dd' akan menghapus baris sekarang.  Misalnya 

     sekarang kursor berada pada 'DI', kemudian kita ketikkan:

          dd

          Sekarang layar akan tampak seperti ini:

          sa11111oneAKHIR 

          ua

          tig

          empat

          lima

           Perintah 'D' akan menghapus semua karakter di  sebelah 

     kanan  kursor  termasuk karakter di bawah  kursor.  

          Jika  suatu  saat secara tak disengaja  kita  melakukan 

     perintah  dan ingin dibatalkan maka kita  dapat  membatalkan 

     dengan  menggunakan  fasilitas  undo  dengan  perintah  'u'. 

     Perintah 'u' akan membetulkan perubahan terakhir yang dibuat 

     pada  teks.  Perintah 'U' akan  memperbaiki  baris  sekarang 

     kembali  ke  keadaan  semula  sebelum  diadakan   perubahan. 

     Berarti   'u'   hanya  mengembalikan   perubahan   terakhir, 

     sedangkan 'U' memperbaiki baris ke keadaan sebelumnya  tanpa 

     mempedulikan perubahan yang telah dibuat.

     6.4 MENCARI TEKS

          Untuk mencari teks dapat digunakan beberapa cara antara 

     lain:

          - pencarian baris tertentu

          - pencarian satu karakter

          - pencarian untaian karakter

          Jika  baris dari karakter atau untaian  karakter  telah 

     diketahui,  maka kita dapat dengan segera ke baris  tersebut 

     tanpa harus menggerakkan kursor. Misalnya kita ingin  berada 

     pada  baris  ke 200 dari file yang kita  edit,  maka  dengan 

     mudah kita dapat menggunakan perintah G sebagai berikut:

          200G

          atau dengan perintah ex:

          :200

          Untuk pencarian satu karakter pada suatu baris tertentu 

     dapat  dilakukan dengan perintah 'f' dan 'F'.  Perintah  'f' 

     mencari ke depan dan perintah 'F' mencari ke belakang  dalam 

     baris  yang  sama  untuk  satu  karakter  yang   ditentukan. 

     Perintah-perintah  ini  akan menempatkan kursor  tepat  pada 

     karakter yang ditemukan.

          Cara  lain adalah dengan menggunakan perintah  't'  dan 

     'T'.  Kedua  perintah ini menyerupai perintah 'f'  dan  'F', 

     kecuali  penempatan  kursor pada  karakter  yang  ditemukan. 

     Perintah 't' akan menempatkan kursor pada sisi kiri karakter 

     yang  ditemukan  dan perintah 'T' pada sisi  kanan  karakter 

     yang  ditemukan. Jika kita ingin mencari karakter  'z'  maka 

     diketikkan:

          tz 

          kursor akan berakhir disisi kiri 'k' pertama.  Demikian 

     untuk perintah-perintah pencarian satu karakter lainnya.

          Pada  umumnya kita melakukan pencarian  berupa  untaian 

     karakter.  Untuk  melakukan  hal  ini  ketiklah  '/'  dengan 

     diikuti untaian karakter yang dicari dengan diikuti ENTER.

          /

          kursor  akan  bergerak ke baris  terbawah  dari  layar. 

     Kemudian  ketiklah untaian karakter yang kita  cari  diikuti 

     ENTER.  Pencarian  dilakukan  secara maju  dan  kursor  akan 

     diletakkan pada awal dari untaian karakter yang dicari  jika 

     untaian karakter tersebut diketemukan.

          Jika   diinginkan  kita  dapat  pula  mencari   untaian 

     karakter secara mundur, yatiu dengan mengetikkan:

          ?

          kursor  akan  bergerak ke baris  terbawah  dari  layar. 

     Kemudian  ketiklah untaian karakter yang kita  cari  diikuti 

     ENTER. Pencarian dilakukan secara mundur dari bawah ke  atas 

     dan  kursor akan diletakkan pada awal dari untaian  karakter 

     yang dicari jika untaian karakter tersebut diketemukan.

           Jika  kita ingin mencari untaian  karakter  berikutnya 

     (jika ada) baik maju ataupun mundur, maka ketikkan:

          n

          Kursor  akan  mencari  pada  baris  selanjutnya.   

          Jika  kita  menggunakan  perintah  pencarian  di   atas 

     terhadap  untaian  karakter 'anda', maka  perintah  tersebut 

     akan  mengabaikan untaian karakter 'Anda'  sebagai  karakter 

     yang dicari. Agar vi mengenal, maka kita harus memasang  set 

     up berikut:

          :set ignorecase

          yang akan mengabaikan perbedaan huruf besar dan  kecil. 

     Untuk mengembalikan ke kondisi semula, ketikkan:

          :set noic

     6.5 MEMINDAHKAN TEKS

          Seperti  pada pengolah kata lainnya, vi  juga  memiliki 

     fasilitas  untuk  melakukan  blok  teks  dan  mengcopy  atau 

     memindahkan  teks  ke  lokasi lain  di  dalam  file.  Proses 

     pemindahan  atau  pengcopyan teks adalah  pertama-tama  teks 

     dipindah  atau  dicopy ke dalam buffer,  kemudian  isi  dari 

     buffer  tersebut  dicopy ke lokasi yang  diinginkan.  Setiap 

     kali  kita menghapus teks, teks tersebut disimpan  di  dalam 

     buffer.  Untuk  jelasnya perhatikan  contoh  berikut  dengan 

     menggunakan teks sebelumnya.

          Kelompok musik legendaris The Beatles terdiri dari Jhon 

          Lenon, Paul McCartney, Ringo Star dan George Harrison.

          Kelompok  ini  telah membubarkan diri dan  tidak  ingin 

          disatukan  kembali. Upaya penyatuan ini  semakin  tidak 

          mungkin   dengan   meninggalnya   Jhon   lenon   akibat 

          pembunuhan didepan apartemennya.

          Letakkan  kursor pada baris pertama teks  dan  hapuslah 

     baris tersebut dengan mengetikkan:

          dd

          sehingga menghasilkan:

          Lenon, Paul McCartney, Ringo Star dan George Harrison.

          Kelompok  ini  telah membubarkan diri dan  tidak  ingin 

          disatukan  kembali. Upaya penyatuan ini  semakin  tidak 

          mungkin   dengan   meninggalnya   Jhon   lenon   akibat 

          pembunuhan didepan apartemennya.

          Baris  petama  dari teks diatas  telah  dihapus  dengan 

     sebelumnya  disimpan  di dalam buffer.  Untuk  mengembalikan 

     baris  tersebut,  kita harus mengcopy isi  buffer  ke  baris 

     pertama teks dengan perintah 'p' atau 'P'. Perintah 'P' akan 

     mengcopy  isi  buffer  yang berisi baris  yang  dihapus  dan 

     meletakkannya  di atas baris tempat kursor berada  sekarang, 

     sedangkan perintah 'p' akan meletakkan di bawah baris tempat 

     kursor berada sekarang.  

          Sekarang  gerakkan  kursor ke baris  pertama  teks  dan 

     ketikkan:

          P

          sehingga menghasilkan:

          Kelompok musik legendaris The Beatles terdiri dari Jhon 

          Lenon, Paul McCartney, Ringo Star dan George Harrison.

          Kelompok  ini  telah membubarkan diri dan  tidak  ingin 

          disatukan  kembali. Upaya penyatuan ini  semakin  tidak 

          mungkin   dengan   meninggalnya   Jhon   lenon   akibat 

          pembunuhan didepan apartemennya.

          Kita  dapat pula meletakkan teks ke dalam buffer  tanpa 

     harus  menghapusnya,  yaitu  dengan  perintah  'Y'.   Dengan 

     kombinasi  bilangan dan perintah ini,  kita  dapat  mengcopy 

     beberapa baris. Misalkan kita berada pada baris pertama teks 

     dan mengetikkan:

          2Y

          akan  mengcopy  2 baris dari baris kursor  sekarang  ke 

     dalam  buffer.  Kemudian  gerak kursor ke  akhir  baris  dan 

     ketikkan:

          p

          sehingga menghasilkan:

          Kelompok musik legendaris The Beatles terdiri dari Jhon 

          Lenon, Paul McCartney, Ringo Star dan George Harrison.

          Kelompok  ini  telah membubarkan diri dan  tidak  ingin 

          disatukan  kembali. Upaya penyatuan ini  semakin  tidak 

          mungkin   dengan   meninggalnya   Jhon   lenon   akibat 

          pembunuhan didepan apartemennya.

          Kelompok musik legendaris The Beatles terdiri dari Jhon 

          Lenon, Paul McCartney, Ringo Star dan George Harrison.

          Kita  dapat  meletakkan obyek teks  lain  dalam  sebuah 

     buffer  dengan menggunakan perinta 'y'.  Ikuti perintah  'y' 

     dengan  spesifikasi  obyek  teksnya.  Misalnya  kita   ingin 

     meletakkan 5 kata ke dalam buffer maka diketikkan:

          y5w

          atau  jika diinginkan meletakkan paragraf pertama  dari 

     teks diatas, maka gerakkan ke awal baris dan ketikkan:

          y{

          Kita  dapat pula menyimpan ke lebih dari  satu  buffer. 

     Untuk  membedakan antara satu buffer dengan buffer  lainnya, 

     maka  setiap buffer harus diberi nama dengan sebuah huruf  a 

     s/d  z.  Disamping  itu,  harap  diperhatikan  bahwa  setiap 

     dilakukan  perintah  pengiriman atau  pemanggilan  isi  dari 

     buffer  harus  di dahului karakter kutip  ganda.  Perhatikan 

     contoh-contoh berikut:

          -------------------------------------------------------

          KIRIM     PANGGIL        OPERASI

          -------------------------------------------------------

          "aY       "ap atau "aP   baris sekarang pada buffer a

          "b4Y      "bp atau "bP   4 baris pada buffer b

          "cy5w     "cp atau "cP   5 kata pada buffer c

          -------------------------------------------------------

                    Tabel 6.3 Operasi dengan buffer

          Tanpa   buffer  yang  ditentukan  namanya,  teks   akan 

     disimpan  pada  buffer  tak  bernama  yang  biasa  digunakan 

     bersama.

          Di  dalam  pengolah kata profesional  seperti  Wordstar 

     dikenal operasi blok, misalnya ^KB dan ^KK yang  dilanjutkan 

     dengan  ^KC untuk pengcopyan blok atau ^KV untuk  pemindahan 

     blok.  Pada vi, operasi seperti ini dapat  dilakukan  dengan 

     perintah  'm'  diikuti  huruf kecil  sebagai  tanda  (mark). 

     Misalnya kita akan memblok teks, maka  yang harus  dilakukan 

     adalah mengetikkan:

          mb

          pada  awal teks yang akan diblok, dimana b adalah  nama 

     tanda  untuk proses blok teks. Kemudian gerakkan  kursor  ke 

     akhir  blok teks. Posisi kursor sekarang adalah  akhir  blok 

     teks. Langkah selanjutnya adalah memasukkan ke dalam  buffer 

     sebagai berikut:

          y`b

          Perintah ini akan mengcopy teks yang berada dalam  blok 

     teks  tanda b ke dalam buffer. Jika operasi yang  diinginkan 

     adalah memindahkan blok maka digunakan perintah:

          d`b

          Perintah ini akan menghapus teks yang berada dalam blok 

     teks  tanda b dengan sebelumnya mengcopy blok teks  tersebut 

     ke  dalam  buffer. Jika digunakan kutip  tunggal  ('),  maka 

     operasi dilakukan dari awal baris dan tidak tepat pada tanda 

     yang  diberikan. Selanjutnya kita dapat meletakkan isi  dari 

     buffer ke dalam teks dengan perintah 'p' atau 'P'.

     6.6 MENGGUNAKAN ex DI DALAM vi

          Secara  keseluruhan  sebenarnya vi  telah  cukup  ampuh 

     dalam   mengelola   teks.   Namun   demikian   untuk   lebih 

     meningkatkan  kemampuan dan kemudahan vi  dilengkapi  dengan 

     editor  baris  ex. Berikut ini beberapa  kemampuan  ex  yang 

     banyak digunakan di dalam vi :

          o Walaupun  ada  beberapa cara untuk  keluar  dari  vi, 

            namun  pemakaian operasi ex tulis (w) dan keluar  (q) 

            mungkin  yang paling banyak digunakan  karena  sangat 

            mudah digunakan. Perintah yang biasa digunakan  untuk 

            menulis  teks  yang  sedang kita edit  ke  file  lain 

            adalah perintah tulis milik ex, yaitu w namafile.

          o Membaca  teks  dari file lain  dengan  memasukkan  ke 

            buffer  menggunakan  perintah baca milik ex  yaitu  r 

            namafile

          o Memasang atau membatalkan set up editor vi  dilakukan 

            melalui operasi set ex.

          o Menjalankan perintah-perintah UNIX melalui editor  vi 

            dilakukan melalui ex.

          o Mengubah teks secara global.

          dan  banyak  kemampuan lainnya yang  akan  meningkatkan 

     performansi  vi.  Pada  sub bab ini  akan  dibahas  beberapa 

     kemampuan  ex yang banyak digunakan. Format  umum  perintah-

     perintah ex adalah:

          [pilihan  jangkauan] perintah  [pilihan  jangkauan]

          jangkauan  menyatakan  baris yang akan  dioperasi  oleh 

     perintah  ex. Jika jangkauan tidak disebutkan  maka  operasi 

     dilakukan  terhadap baris sekarang. Jangkauan ada 3  bentuk, 

     yaitu:

          o Nomor baris tunggal

            menunjukkan  baris  hanya  baris  tunggal  saja  yang 

            dikenakan perintah yang diberikan.

            Contoh:

               :3d          (hapus baris ke tiga)

               :d           (hapus baris sekarang)

          o Pasangan bilangan yang dipisahkan oleh koma

            menunjukkan  baris  jangkauan  baris  yang  dikenakan 

            perintah yang diberikan. Jangkauan dapat berupa nomor 

            bilangan, tanda (mark) atau ekspresi reguler.

            Contoh:

               :3,10d  (hapus dari baris 3 s/d 10)

               :2,$d   (hapus dari baris 2 s/d akhir baris)

               :.,.+5d (hapus baris sekarang s/d 5 baris berikut)

               :'a,'b  (hapus dari baris tanda 'a s/d tanda 'b)

          o Indikator global yang diikuti ekpresi reguler

            menunjukkan aksi global pada baris yang sesuai dengan 

            ekpresi regulernya.

            Contoh:

               :g/UNIX/d   (hapus semua baris yang berisi UNIX)

               :g/BSD/s/BSD/bsd/g  (ubah semua BSD menjadi bsd)     

     6.6.1 Mencari dan Mengganti Teks

          Pemanfaatan   ex  banyak  digunakan   untuk   melakukan 

     perintah-perintah  global yang akan mempengaruhi semua  teks 

     di  dalam file, misalnya mengubah semua kata 'Unix'  menjadi 

     'UNIX', menghapus semua baris yang mengandung kata 'BSD' dan 

     lain-lain. Format umum perintah ini adalah:

          s/target/pengganti/[pilihan jangkauan]

          dimana  target  adalah  kata  yang  akan  diganti   dan 

     pengganti  adalah kata yang akan  menggantikannya.  Misalkan 

     kita memiliki file yang berisi:

          Dari Unix oleh Unix dan untuk Unix

          Hanya Unix yang dapat diterima kalangan non Unix

          Karena Unix adalah Unix

          Sekarang  file tersebut sedang kita edit dengan  editor 

     vi. Gerakkan kursor ke awal baris dandan ketikkan:

          :s/Unix/UNIX     (ganti Unix ke UNIX di temuan pertama)

          maka akan menghasilkan:

          Dari UNIX oleh Unix dan untuk Unix

          Hanya Unix yang dapat diterima kalangan non Unix

          Karena Unix adalah Unix

          Perhatikan bahwa yang diubah hanyalah kata 'Unix'  pada 

     temuan  pertama di baris pertama. Masih pada baris  pertama, 

     lakukan  perintah  di  atas dengan  memberikan  pilihan  'g' 

     sebagai berikut:

          :s/Unix/UNIX/g   (ganti Unix ke UNIX di seluruh temuan)

          maka akan menghasilkan:

          Dari UNIX oleh UNIX dan untuk UNIX

          Hanya Unix yang dapat diterima kalangan non Unix

          Karena Unix adalah Unix

          Semua  kata  'Unix' diganti menjadi 'UNIX'  pada  baris 

     pertama  (baris  sekarang) dan tidak  hanya  temuan  pertama 

     saja.  Selanjutnya  agar operasi  dilakukan  pada  jangkauan 

     tertentu, kita harus menetapkan jangkauan sebagai berikut:

          :2,3s/Unix/UNIX/g  (ganti pada baris 2 s/d 3)

          maka akan menghasilkan

          Dari UNIX oleh UNIX dan untuk UNIX

          Hanya UNIX yang dapat diterima kalangan non UNIX

          Karena UNIX adalah UNIX

          Untuk  operasi dengan jangkauan semua baris teks  dapat 

     dilakukan dengan perintah berikut:

          :g/UNIX/s/UNIX/Unix/g  (ganti pada semua baris)

          maka akan menghasilkan:

          Dari Unix oleh Unix dan untuk Unix

          Hanya Unix yang dapat diterima kalangan non Unix

          Karena Unix adalah Unix

          pernyataan  g/UNIX/s/UNIX/Unix/g  dapat  disederhanakan 

     menjadi

          :g/UNIX/s//Unix/g

          dimana   target  yang  kosong  (null)   dari   perintah 

     substitusi  diartikan sebagai sama dengan  ekspresi  reguler 

     sebelumnya,   yaitu   g/UNIX/.  Perintah  ini   dapat   pula 

     dinyatakan dengan perintah berikut:

          :1,$s/UNIX/Unix/g

     6.6.2 Operasi blok

          Operasi  blok  dapat  dilakukan  dengan  mudah   dengan 

     menggunakan format seperti ini:

          jangkauan blok  perintah tujuan

          dimana  jangkauan  blok merupakan jangkauan  dari  teks 

     yang akan dikenakan perintah. Perintah dapat berupa  operasi 

     copy  (co), pemindahan (mo), tulis (w) atau baca (r).  Hasil 

     operasi akan diletakkan ke tujuan. Perhatikan file berikut:

          Dari Unix oleh Unix dan untuk Unix

          Hanya Unix yang dapat diterima kalangan non Unix

          Karena Unix adalah Unix

          Gerakkan kursor ke baris ke tiga dan ketikkan  perintah 

     pengcopyan berikut:

          :1,2 co .

          yang akan mengcopy baris ke 1 s/d 2 ke baris  sekarang, 

     sehingga menghasilkan:

          Dari Unix oleh Unix dan untuk Unix

          Hanya Unix yang dapat diterima kalangan non Unix

          Dari Unix oleh Unix dan untuk Unix

          Hanya Unix yang dapat diterima kalangan non Unix

          Karena Unix adalah Unix

          Untuk memindahkan baris ke 1 s/d 3 ke baris 5 dilakukan 

     perintah berikut:

          :1,3 mo 5

          yang  akan  memindahkan baris ke 1 s/d 3  ke  baris  5, 

     sehingga menghasilkan: 

          Hanya Unix yang dapat diterima kalangan non Unix

          Dari Unix oleh Unix dan untuk Unix

          Hanya Unix yang dapat diterima kalangan non Unix

          Dari Unix oleh Unix dan untuk Unix

          Karena Unix adalah Unix

          Untuk  menuliskan  blok  teks tertentu  ke  file  dapat 

     dilakukan perintah berikut:

          :3,5 w coba3

          sehingga jika kita keluar dari vi dan melihat isi  file 

     coba3, file tersebut berisi:

          $ cat coba3

          Hanya Unix yang dapat diterima kalangan non Unix

          Dari Unix oleh Unix dan untuk Unix

          Karena Unix adalah Unix

          $

          Jika file tujuan telah ada dan kita tidak ingin menimpa 

     melainkan menambahkan pada akhir baris, maka dapat digunakan 

     perintah berikut ini:

          :3,5 w >> coba3

          sehingga jika kita keluar dari vi dan melihat isi  file 

     coba3, file tersebut berisi:

          $ cat coba3

          Hanya Unix yang dapat diterima kalangan non Unix

          Dari Unix oleh Unix dan untuk Unix

          Karena Unix adalah Unix

          Hanya Unix yang dapat diterima kalangan non Unix

          Dari Unix oleh Unix dan untuk Unix

          Karena Unix adalah Unix

          $

          Sedangkan untuk membaca atau mengambil isi file lain ke 

     dalam  teks yang sedang kita edit dapat  digunakan  perintah 

     berikut:

          :2 r coba3

          yang akan membaca file coba3 dan diletakkan ke baris  2 

     dari teks yang sedang kita edit.

     6.6.3 Interaksi dengan Shell

          Ketika   kita  bekerja  dengan  vi,  kita  dapat   pula 

     menjalankan  perintah UNIX lainnya. Caranya  adalah  sebagai 

     berikut:

          :! namaprogram

          Misalnya  ketika  kita  menggunakan  vi,   kita   dapat 

     pula melihat  isi direktori dengan mengetikkan perintah:

          :! ls -al

          atau  jika  kita sedang mengedit teks  dan  membutuhkan 

     perhitungan, kita dapat menjalankan program kalkulator  (bc) 

     tanpa harus keluar dari vi:

          :!bc

          setelah  melakukan penghitungan dan diakhiri dengan  ^D 

     maka vi akan memberikan pesan:

          [Press return to continue]

          Jika operasi ini masih dirasakan mengganggu, kita dapat 

     keluar dari vi tanpa kita 'benar-benar' keluar, yaitu dengan 

     mengetikkan:

          :sh 

          Kita  akan mendapatkan prompt shell dan dapat  langsung 

     beraktifitas  seperti  biasanya. Untuk kembali ke  vi  cukup 

     diketikkan:

          ^D

          atau

          exit

          Hal  lain yang cukup penting dalam interaksi  shell  di 

     dalam vi dengan menggunakan ex adalah perintah:

          : [posisi baris ] r ! perintah

          yang  akan menampilkan hasil operasi perintah ke  dalam 

     teks  yang sedang kita edit. Untuk lebih  jelas,  perhatikan 

     teks berikut yang dimisalkan sedang kita edit:

          satu dua tiga

          empat lima enam

          tujuh delapan sembilan

          sepuluh sebelas dan seterusnya

          Jika kita akan memberikan tanggal dan waktu pada  baris 

     pertama  dari  teks  yang  sedang  kita  edit,  maka   dapat 

     diketikkan:

          :1 r! date

          maka akan menghasilkan:

          Fri Oct 23 07:28:32 PDT 1992

          satu dua tiga

          empat lima enam

          tujuh delapan sembilan

          sepuluh sebelas dan seterusnya

          Interaksi vi dan shell lain yang tidak kalah pentingnya 

     adalah:

          :jangkauan ! perintah

          yang  akan  memproses baris teks yang  kita  edit  pada 

     jangkauan  sesuai  dengan perintah  yang  telah  ditentukan. 

     Misalnya  kita akan mengurutkan teks yang sedang  kita  edit 

     maka ketikkan:

          :2,4 ! sort

          maka akan menghasilkan:

          Fri Oct 23 07:28:32 PDT 1992

          empat lima enam

          satu dua tiga

          sepuluh sebelas dan seterusnya

          tujuh delapan sembilan

     6.6.4 Membuat Perintah Sendiri

          Ada dua cara untuk membuat perintah sendiri pada editor 

     vi yaitu:

          o Perintah pada mode perintah

            Teknik  ini  sering disebut macro.  Untuk  membuatnya 

            digunakan perintah map dengan format sebagai berikut:

               :map kunci perintah

            Untuk  mendefinisikan  perintah baru  'g'  yang  akan    

            membawa kursor ke baris pertama, maka ketiklah:

               :map g 1G

            Maka  setelah proses pendefinisian ini,  setiap  kita 

            mengetikkan 'g', kursor akan dibawa ke baris pertama. 

            Kita dapat pula membuat perintah yang lebih  komplek, 

            misalnya  membuat  perintah M  yang  akan  memasukkan 

            kata '!AWAL' pada awal baris dan '!AKHIR' pada  akhir 

            baris pada baris sekarang.

               :map M I!AWAL^[A!AKHIR^[

            dimana penekanan ESC pada vi akan dinyatakan  sebagai 

            ^[.  Jadi, jika kita memiliki kalimat:

               Karena Unix adalah Unix

            kemudian ketikkan perintah:

               M

            maka akan menghasilkan

               !AWALKarena Unix adalah Unix!AKHIR

            Selanjutnya untuk membatalkan pembuatan perintah yang 

            telah diciptakan digunakan perintah:

               :unmap kunci

          o Perintah pada mode pemasukkan teks

            Ketika kita mengetik teks, sering terdapat kata  yang 

            cukup  panjang  dan berulang-ulang.  Dengan  perintah 

            abbr, kita dapat menyimpan untaian karakter  tersebut 

            ke dalam sebuah kunci tertentu. Perintah seperti  ini 

            di  dalam Wordstar disebut sebagai shorthand.  Format 

            yang digunakan adalah:

               :abbr key teks

            Misalnya kata 'sistem operasi UNIX' akan disimpan  di 

            dalam  kunci  'U', maka ketik perintah  berikut  pada 

            mode perintah:

               :abbr U sistem operasi UNIX

            Sehingga  jika kita mengetikkan 'U' diikuti spasi  di 

            dalam  mode  pemasukkan  teks, maka  kunci  'U'  akan 

            diganti   dengan  dengan  untaian  karakter   'sistem 

            operasi UNIX'.

     6.6.5 Lingkungan vi

          Editor   vi   memiliki  sejumlah  flag   dan   variabel 

     lingkungan  yang mendefinisikan lingkungan pengeditan.  Kita 

     dapat mensetnya dengan menggunakan perintah:

          :set lingkungan

          Untuk  melihat  set up apa saja  yang  bisa  diguanakan 

     dapat  dilihat  dengan menggunakan perintah berikut  ini  di 

     dalam mode perintah dalam vi.

          :set all

          noautoindent            nonumber                        noshowmode

          autoprint               open                            noslowopen

          noautowrite             optimize                        tabstop=8

          nobeautify              paragraphs=IPLPPPQPP LIpplpipbp taglength=0

          directory=/tmp          noprompt                        tags=tags /usr/lib/tags

          noedcompatible          noreadonly                      term=dumb

          noerrorbells            noredraw                        noterse

          hardtabs=8              remap                           timeout

          noignorecase            report=5                        ttytype=dumb

          nolisp                  scroll=4                        warn

          nolist                  sections=NHSHH HUnhsh           window=8

          magic                   shell=/bin/csh                  wrapscan

          mesg                    shiftwidth=8                    wrapmargin=0

          nonovice                noshowmatch                     nowriteany

          [Press return to continue]

          Pada  sub  bab  ini pembahasan mengenai  set  up  hanya 

     dibatasi pada beberapa set up yang sangat penting dan sering 

     digunakan saja.

          Secara horisontal, panjang teks standar pada vi  adalah 

     80  karakter.  Kita  dapat mengubah  panjang  teks  tersebut 

     dengan menggunakan:

          :set wrapmargin=10

          atau

          :set wm=10

          yang  akan  mengubah panjang teks  standar  menjadi  70 

     karakter, yaitu 80 dikurang 10 karakter.

          Set up lain yang banyak dipakai adalah set up penomoran 

     baris  di  sisi kiri. 

          :set number

          atau 

          :set nu

          Penomoran  ini tidak termasuk di dalam  teks  melainkan 

     hanya   ditampilkan   di  layar  editor   vi   saja.   Untuk 

     mengembalikan pada kondisi tanpa penomoran digunakan:

          :set nonumber

          atau

          set nonu

          Bagi  pemula  yang menggunakan vi, mungkin  akan  lebih 

     mudah jika kondisi mode sekarang ditampilkan.

          :set showmode

          Sehingga  akan ditampilkan pesan input mode  bagi  mode 

     pemsukkan teks. Untuk mengembalikan ke kondisi semula:

          :set noshowmode

          Set   up  penting  lainnya  adalah  untuk   mengabaikan 

     perbedaan  huruf besar dan kecil dalam  pencarian,  misalnya 

     kata 'Unix' dan 'UNIX'.

          :set ignorecase

          untuk  mengembalikan ke kondisi dimana huruf besar  dan 

     kecil berbeda:

          :set noignorecase

          atau 

          :set noic

          Masih  banyak set up lain yang dapat Anda  coba  sesuai 

     dengan kebutuhan Anda.

          Kita  dapat  merekam lingkungan vi kita  sendiri,  yang 

     terdiri  dari  set  up yang telah  terpasang  dan  perintah-

     perintah buatan sendiri ke dalam file .exrc. 

          $ cat .exrc

          set  showmode

          set  wm=10

          map  g 1G

          map  M I!AWAL^[A!AKHIR^[

          abbr U sistem operasi UNIX

          abbr T utilitas-utilitas sistem

          $

          Ketika editor vi dipanggil, vi akan mencari file  .exrc 

     di  home directory kita. Jika ditemukan, maka file  tersebut 

     akan  dijalankan  sebagai script dari  perintah-perintah  ex 

     sebelum pengeditan dimulai. Dengan demikian setiap kali kita 

     menggunakan  editor  vi, lingkungan yang sesuai  milik  kita 

     otomatis telah terpasang.

     6.7 EDITOR TEKS TAK INTERAKTIF DENGAN  sed

          Perintah  sed  adalah editor  teks  tak-interaktif  dan 

     merupakan  turunan  dari ed. Data  dialirkan  perbaris  dari 

     masukan standar atau file ke sed kemudian dilakukan  operasi 

     perintah ed pada setiap baris tersebut dan hasilnya  ditulis 

     ke   standar   keluaran,   itu   sebabnya   disebut   editor 

     berorientasi stream . Format umum dari perintah sed adalah:

          sed [alamat[,alamat]] operasi [file .... ]

          dimana  alamat adalah baris yang cocok, yang  merupakan 

     obyek operasi sed. Alamat dapat merupakan  nomor baris  atau 

     pola. Contoh penulisan perintah sed:

        sed 1,10d input_file

             |  |  |

             |  |  |________ file

             |  |___________ operasi

             |______________ alamat berupa nomor baris

        sed /mylove/d input_file > output_file

               |    |      |     |   |

               |    |      |     |   |___ file keluaran

               |    |      |     |_______ pengalihan keluaran

               |    |      |_____________ file masukan

               |    |____________________ operasi

               |_________________________ alamat berupa pola

               Gambar 6.3 Penulisan perintah sed lengkap

          Operasi  yang dapat dilakukan oleh sed adalah  beragam. 

     Beberapa operasi yang bermanfaat dan sering digunakan antara 

     lain seperti terlihat pada tabel 6.4.

       ---------------------------------------------------------

       perintah     operasi

       ---------------------------------------------------------

          a         tambahkan baris ke output

          d         hapus baris dan baca baris berikutnya

          i         sisipkan tesk berikut sebelum baris berikut

          p         tampilkan baris output

          q         akhiri sed

          r         baca file dan salin ke standar output

          s         substitusi

          w         tulis ke file

          =         cetak nomor baris sekarang

          !op       lakukan perintah op pada baris tak terpilih 

       ---------------------------------------------------------

                        Tabel 6.4 Operasi sed

          Untuk  lebih  memahami bagaimana  keampuhan  sed  dalam 

     memanipulasi  teks,  maka  akan  diuraikan  lebih   mendalam 

     mengenai operasi-operasi di atas. 

          $ cat percobaan

          denny jakarta 1969

          irmawati medan 1967

          chaerinda jakarta 1968

          pahotma medan 1968

          chaidir jakarta 1967

          $

          Untuk  melakukan substitusi terhadap suatu  kata  dapat 

     dilakukan sebagai berikut:

          $ sed '1,3 s/jakarta/bandung/' percobaan

          denny bandung 1969

          irmawati medan 1967

          chaerinda bandung 1968

          pahotma medan 1968

          chaidir jakarta 1967

          $

          Proses  di  atas  adalah  melakukan  penggantian   kata 

     jakarta  menjadi bandung mulai dari baris ke 1 sampai  dengan 

     baris  ke  3 saja. Baris berikutnya diabaikan  dan  langsung 

     ditampilkan ke layar.

          Jika  kita mengingankan perubahan kata jakarta  menjadi 

     bandung  mulai dari awal hingga akhir baris  maka  jangkauan 

     alamat dapat diubah sebagai berikut:

          $ sed '1,$ s/jakarta/bandung/' percobaan

          denny bandung 1969

          irmawati medan 1967

          chaerinda bandung 1968

          pahotma medan 1968

          chaidir bandung 1967

          $ cat percobaan

          denny jakarta 1969

          irmawati medan 1967

          chaerinda jakarta 1968

          pahotma medan 1968

          chaidir jakarta 1967

          $

           Perhatikan pula bahwa sed tidak mengubah file aslinya, 

     sehingga  jika kita menginginkan adanya  perubahan  terhadap 

     file  aslinya  maka yang harus kita  lakukan  adalah  proses 

     pengalihan keluaran standar ke dalam file.

          $ sed '1,3 s/jakarta/bandung/' percobaan > /tmp/coba

          $ mv /tmp/coba percobaan

          $

          Seperti telah kita ketahui bahwa sed akan  mengeluarkan 

     setiap  baris,  walaupun  tidak  ada  perubahan  pada  baris 

     tersebut.  Namun  demikian kita dapat  menghentikan  operasi 

     menampilkan ke layar. Misalnya kita menginginkan menampilkan 

     hanya 2 baris data dari file percobaan,

          $ sed 2q percobaan    (jika sudah 2 baris maka selesai)

          denny bandung 1969

          irmawati medan 1967

          $

          Di  atas telah disebutkan bahwa alamat  yang  digunakan 

     oleh sed ada 2 jenis yaitu nomor dan pola. Contoh-contoh  di 

     atas  menggunakan nomor sebagai alamatnya. Berikut ini  akan 

     diberikan  contoh untuk alamat yang menggunakan  pola.  Pola 

     dapat berupa ekspresi reguler.

          $ sed '/medan/d' percobaan    (hapus yang berisi medan)

          denny bandung 1969

          chaerinda bandung 1968

          chaidir bandung 1967

          $

          Masih  banyak lagi kemampuan sed yang  belum  terungkap 

     pada  sub  bab ini. Tabel di bawah  memperlihatkan  beberapa 

     contoh pemakaian sed lainnya.

       ----------------------------------------------------------

       perintah sed

       ----------------------------------------------------------

       sed '/[Uu]nix/d'       hapus  baris yang berisi kata  Unix 

                              atau unix

       sed -n '2,9p'          cetak baris 2 s/d 9 saja

       sed '/unix/s/1/5/'     ubah  1 menjadi 5 pada semua  baris 

                              yang mengandung kata unix

       sed 's/^...//'         hapus   3  karakter  pertama   dari 

                              setiap baris

       sed 's/...$//'         hapus  3  karakter  terakhir   dari 

                              setiap baris

       sed '1,/^$/d'          hapus sampai dengan baris kosong

       sed '/unix/w xxx'      tulis semua baris yang berisi  kata 

                              unix ke dalam file xxx

       ----------------------------------------------------------

                        Tabel 6.5 Perintah sed

BAB 7

SHELL DAN PEMROGRAMANNYA

          Pada bab ini akan dibahas mengenai shell dan  kemampuan 

     pemrogramannya,  khususnya  Bourne  Shell.  Pembahasan  akan 

     mencakup mengenai:

          - kemampuan shell

          - dasar-dasar pemrograman shell

          - kutip 

          - argumen

          - kendali pilihan

          - pengulangan

          - lingkungan pemakai

          - pemrograman lanjutan

     7.1 SHELL DAN KEMAMPUANNYA

          Shell  merupakan penghubung antara pemakai dan  sistem.  

     Disamping itu Shell memiliki fungsi untuk menganalisa setiap 

     perintah   yang   dimasukkan   melalui   prompt   UNIX   dan 

     mengeksekusi   perintah  tersebut.  Disamping   itu,   shell 

     memiliki   kemampuan   sebagai   interpreter   dari   bahasa 

     pemrogramannya, yaitu bahasa shell.

          Pada  dasarnya  pemrograman shell Unix  adalah  seperti 

     batch file pada DOS, namun dalam berbagai hal lebih canggih.

          Shell  sebagai  bahasa pemrograman  memiliki  kelebihan 

     dibanding  dengan  bahasa  pemrograman  lainnya  yang  biasa 

     dipergunakan pada sistem UNIX, yaitu:

           o Mudah  dan  handal  dalam  menggabungkan   utilitas-

             utilitas,   lingkungan  sistem   (environment)   dan  

             tools-tools   yang  ada  pada  sistem   UNIX   serta 

             memanfaatkannya secara optimal.

           o Karena  pemrograman shell dalam bentuk  interpreter, 

             maka  kesalahan yang terjadi pada  pemrograman  akan 

             lebih mudah ditemukan dan dimodifikasi.

           o Pemanfaatan  utilitas dan tools  UNIX  mengakibatkan 

             pengembangan  suatu  program  dengan  shell  relatif 

             lebih  cepat.  Karena  kita  tidak  perlu  membangun 

             modul-modul baru lagi dari awal.

          Bagi  para  pemakai  biasa,  pemrograman  shell  sering 

     dimanfaatkan  untuk mendukung kerja pemakai pada  lingkungan 

     sistem  UNIX. 

          Bagi  para administrator sistem dan  pembangun  sistem, 

     pemrograman shell banyak digunakan untuk:

          - instalasi, reinstalasi dan deinstalsi perangkat lunak

          - menu navigator

          - pengelola administrasi pemakai dan file

          - pengendali piranti-piranti yang digunakan

     7.2 DASAR-DASAR PEMROGRAMAN SHELL

     7.2.1 Membuat Program Shell

          Pemrograman  shell dapat dilakukan  dengan  menggunakan 

     dua cara:

       o Pengetikkan isi program langsung ke terminal. 

          $ ls | wc -l       (pemrograman sederhana !)

                6

          $  

       o Pengetikan program ke dalam file. 

         Untuk  menulis  program ke dalam  file  dapat  digunakan 

         editor  teks, misalnya vi (lihat bab  sebelumnya).  File 

         yang berisi program shell disebut script. 

          $ cat jpemakai

          who | wc -l    (isi program yang tersimpan di jpemakai)

          $

          Untuk  menjalankan program yang baru kita  buat  adalah 

     dengan memanggil nama programnya.

          $ jpemakai          (eksekusi program)

          sh: jpemakai: cannot execute

          $

          Program  tersebut  tidak bisa diekskusi,  tentunya  ada 

     sesuatu yang tertinggal. Mari kita coba cara berikut ini:

          $ sh jpemakai       (eksekusi program dengan shell)

                6

          $

          Dengan memanggil shell terlebih dahulu, program di atas 

     dapat dijalankan dengan baik. Cara lain yang lebih  praktis, 

     yaitu  dengan mengubah mode perijinan file program  tersebut 

     sehingga  diijinkan untuk  dieksekusi. Untuk  itu  digunakan 

     perintah chmod

          $ ls -l jpemakai

          rw-rw-r--   1 denny    s1_87         12 Oct 23 07:31 jpemakai

          $ chmod +x jpemakai            (mengijinkan eksekusi)

          $ ls -l jpemakai

          rwxrwxr-x   1 denny    s1_87         12 Oct 23 07:31 jpemakai

          $ jpemakai

                6

          $

          Untuk memaksa shell yang aktif yang bukan  Bourne Shell 

     mengeksekusi program dalam bahasa pemrograman Bourne  Shell, 

     dapat  digunakan #!/bin/sh  yang diletakkan pada awal  baris 

     program  shell.  Dengan  demikian jenis  shell  apapun  yang 

     sedang aktif sekarang dapat mengeksekusi program kita dengan 

     penerjemah dalam bahasa Bourne Shell.

          % cat jpemakai                           (ini C Shell)

          #!/bin/sh

          who | wc -l

          % jpemakai

                6

          %

          Perhatian,  dukungan  shell  terhadap  #!/bin/sh  tidak 

     selalu  terdapat pada sistem UNIX. Misalnya saja  SCO  Xenix 

     dan  SCO  UNIX  mengharuskan baris  pertama  diisi  perintah 

     kosong seperti karakter ':' baru diikuti #!/bin/sh. 

          Mekanisme   standar  shell  seperti   pengalihan   arah 

     keluaran  dan masukan (I/O redirection) dan  pemipaan  dapat 

     langsung digunakan pada program jpemakai ini.

          $ jpemakai > benarkah       (masukkan keluaran ke file)

          $ cat benarkah              (lihat isi file benarkah)

                6

          $ jpemakai | wc -c          (pemipaan ke perintah wc)

                1

          $

          Di dalam program shell, kita dapat meletakkan komentar, 

     yaitu  dengan  menggunakan  karakter  '#'.  Dengan  demikian 

     ketika shell menjumpai karakter #, maka karakter  dibelakang  

     karakter '#' pada baris tersebut akan diabaikan.

          $ cat info

          #-----------------------------------------------------

          # Program info versi 1.0

          # untuk menampilkan informasi sederhana

          #-----------------------------------------------------

          echo Tanggal sekarang dan waktu sekarang adalah:

          date              # perintah melihat waktu sistem

          echo Jumlah pemakai sistem sekarang adalah:

          who | wc -l       # perintah menghitung jumlah pemakai

          echo Direktori kerja sekarang adalah:

          pwd               # perintah melihat direktori kerja

          $ info

          Tanggal sekarang dan waktu sekarang adalah:

          Fri Oct 23 07:28:32 PDT 1992

          Jumlah pemakai sistem sekarang adalah:

          6

          echo Direktori kerja sekarang adalah:

          /usr/mhs/denny

          $

     7.2.2 Variabel

          Seperti juga bahasa pemrograman lainnya, shell memiliki 

     kemampuan  untuk menyimpan nilai ke dalam  variabel.  Sebuah 

     variabel  shell  dapat diawali oleh  alfabet  atau  karakter 

     garis bawah dan diikuti oleh nol atau lebih alfanumerik atau 

     karakter  garis bawah. 

          Untuk  menyimpan sebuah nilai ke dalam variabel  shell, 

     kita  dapat lakukan dengan menyebutkan nama  variabel  shell 

     dengan  diikuti  oleh karakter sama dengan '='  dan  diikuti 

     oleh nilai yang ingin disimpan ke dalam variabel tersebut.

          $ jumlah=10

          $ dir_ku=/usr/mhs/denny

          $ 

          Ada   dua  hal  penting  yang  perlu  diketahui   dalam 

     penggunaan  variabel  shell ini.  

          o Tidak diijinkan adanya spasi pada sebelum dan sesudah 

            karakter sama dengan.

          o Shell  tidak  mengenal tipe  data.  Dengan  demikian, 

            nilai  apapun  yang  kita  masukkan  akan   diartikan 

            sebagai  untaian karakter. Jadi nilai 10 pada  contoh 

            diatas adalah untaian karakter dan bukan integer.

          Untuk menampilkan isi dari variabel, digunakan perintah 

     echo sebagai berikut.

          echo $variabel

          Karakter $ merupakan karakter khusus yang dikenal  oleh 

     shell,  yang  mengartikan bahwa karakter  berikutnya  adalah 

     nama variabel. Perhatikan contoh berikut:

          $ echo jumlah

          jumlah

          $ echo $jumlah

          10

          $

          Contoh pertama menunjukkan bahwa jumlah adalah karakter 

     biasa, sedangkan pada contoh ke dua jumlah menunjukkan  nama 

     variabel sehingga shell akan mensubstitusi variabel tersebut 

     dengan nilai yang tersimpan didalamnya untuk ditampilkan  ke 

     terminal oleh perintah echo.

          Untuk menghapus atau menghilangkan variabel yang  telah 

     kita definisikan digunakan perintah unset sebagai berikut:

          $ x=100

          $ echo $x

          100

          $ unset x

          $ echo $x

                                        (variabel telah hilang !)

          $

     7.2.3 Membaca Data

          Proses  pembacaan  data dapat dilakukan  dari  terminal 

     atau  dari file. Caranya adalah dengan menggunakan  perintah 

     read sebagai berikut:

          read variabel-variabel

          dimana  ketika perintah ini dieksekusi,  shell  membaca 

     sebuah  baris  dari  standar  masukan  dan  memberikan  kata 

     pertama  ke  dalam  variabel pertama  yang  tercantum  dalam 

     variabel-variabel,  selanjutnya kata ke dua akan dibaca  dan 

     diberikan ke variabel kedua, demikian seterusnya. Jika masih 

     terdapat   banyak  kata  dari  standar  masukan,   sedangkan 

     variabel  yang  ada terbatas, maka  variabel  terakhir  akan 

     berisi kata-kata sisa dari standar masukan.

          $ read x

          saya

          $ echo $x

          saya

          $ read x y                     (sisanya diberi ke y)

          saya dan kamu sekalian

          $ echo $y 

          dan kamu sekalian

          $ read x                       (semuanya diberi ke x)

          saya dan kamu sekalian

          $ echo $x

          saya dan kamu sekalian

          $

          Pembacaan   dari  file  dilakukan  dengan   menggunakan 

     pengalihan arah masukkan dan keluaran.

          $ cat data

          saya kamu

          $ read x y < data

          $ echo $y $x

          kamu saya

          $

     7.3 KUTIP 

     7.3.1. KARAKTER KUTIP TUNGGAL

          Banyak  alasan mengapa kita harus menggunakan  karakter 

     kutip ini. Salah satunya adalah agar spasi yang kita berikan 

     tetap dipertahankan. Perhatikan kasus berikut ini.

          $ cat telepon

          denny yerianto           8290503

          chaerinda kuswidayanti   8198477

          samik ibrahim            7270162

          denny kurniadi           8500910

          $ grep denny telepon

          denny yerianto           8290503

          denny kurniadi           8500910

          $

          Ada  dua nama yang ditemukan bernama denny. Salah  satu 

     cara  untuk  mendapatkan nomor telepon  yang  kita  inginkan 

     adalah dengan mengetikkan nama yang dicari secara lengkap.

          $ grep denny yerianto telepon

          grep: can't open yerianto

          denny yerianto           8290503

          denny kurniadi           8500910

          $

          Ternyata operasi tersebut gagal dengan pesan bahwa file 

     yerianto tidak dapat dibuka atau tidak ada. Kini  gunakanlah 

     karakter kutip tunggal sebagai berikut.

          $ grep 'denny yerianto' telepon

          denny yerianto           8290503

          $

          Ketika  shell menemukan karakter kutip  tunggal,  shell 

     akan  melewati  dan mengabaikan arti  karakter  khusus  yang 

     dilewati    hingga   ditemukan   karakter   kutip    tunggal 

     pasangannya. 

          $ echo apakah     spasi   ini terjaga

          apakah spasi ini terjaga               (tidak terjaga!)

          $ echo 'apakah     spasi   ini terjaga' 

          apakah     spasi   ini terjaga         (tetap terjaga!)

          $

          Pada  contoh  echo  pertama  ,  setiap  kata  diartikan 

     sebagai  bagian  dari argumen perintah echo,  jadi  perintah 

     echo di atas memiliki 4 argumen. Sedangkan pada contoh  echo 

     ke dua, seluruh kata yang ada dalam karakter kutip merupakan 

     satu  kesatuan  argumen, jadi perintah echo  tersebut  hanya 

     memiliki  1 argumen saja. 

          Di   awal  pembahasan  karakter  kutip  tunggal   telah 

     disebutkan  bahwa setelah ditemukan karakter kutip  tunggal, 

     shell  akan mengabaikan arti seluruh karakter khusus  hingga 

     ditemukan  karakter  kutip  tunggal  pasangannya.   Sekarang 

     perhatikanlah  apa akibat penggunaan karakter kutip  tunggal 

     pada variabel.

          $ jumlah=9999

          $ echo $jumlah

          9999

          $ echo '$jumlah'

          $jumlah            (karakter $ tak diterjemahkan shell)

          $

          Demikian pula dengan karakter khusus yang biasa dikenal 

     oleh  shell, seperti *, >, <, >>, <<, & dan ` serta ",  juga 

     akan diabaikan.

          $ echo *

          test jpemakai coba

          $ echo '*'

          *

          $ echo '* > < >> << & `  " '

          * > < >> << & `  " 

          $

          Pemanfaatan  karakter  kutip tunggal  juga  menyulitkan 

     kita  untuk memadukan nilai variabel, seperti terlihat  pada 

     contoh berikut:

          $ jumlah=4

          $ echo 'pemain musik The Beatles ada $jumlah orang'

          pemain musik The Beatles ada $jumlah orang

          $

          Padahal  kita menginginkan nilai dari  variabel  jumlah 

     tertera pada hasil pemanggilan perintah echo.

          pemain musik The Beatles ada 4 orang

          Untuk  mengatasi  hal ini maka kita  dapat  menggunakan 

     karakter kutip ganda seperti diuraikan pada sub bab berikut. 

     7.3.2 Karakter Kutip Ganda

          Cara kerja karakter kutip ganda serupa dengan  karakter 

     kutip tunggal, namun karakter kutip ganda tidak  mengabaikan 

     arti  semua  karakter khusus yang berada  di  dalam  lingkup 

     kutipannya.   Karakter  kutip  ganda  mengijinkan   beberapa 

     karakter khusus dikenal oleh shell, yaitu:

          - karakter dollar $

          - karakter kutip terbalik ` ... `

          - karakter garis miring terbalik \

          Berikut  ini akan diperlihatkan  perbedaan  pemanfaatan 

     antara tanpa karakter kutip, kutip tunggal dan kutip ganda.

          $ tebak=*

          $ echo $tebak          (identik -- echo *)

          test jpemakai coba     (nama file pada direktori)

          $ echo '$tebak'          

          $tebak                 ($tebak adalah karakter biasa)

          $ echo "$tebak"        (identik -- echo "*")

          *                      (karakter * tidak diterjemahkan)

          $

          Pada  echo pertama, variabel tebak disubstitusi  dengan 

     nilai yang tersimpan, yaitu *, kemudian shell  mensubstitusi 

     * dengan nama file pada current directory. 

          Pada  echo  ke  dua,  $tebak  tidak  diartikan  sebagai 

     variabel  karena arti karakter khusus $  diabaikan  sehingga 

     $tebak dianggap rangkaian karakter biasa dan ditampilkan apa 

     adanya. 

          Pada  echo ke tiga, $tebak diartikan  sebagai  variabel 

     oleh  shell, sehingga karakter variabel $tebak  disubstitusi 

     dengan  *. Karena substitusi nama file tak bekerja di  dalam 

     karakter kutip ganda, maka * yang dipassing sebagai  argumen 

     dari perintah echo. 

          Dengan  demikian permasalahan yang terdapat pada  akhir 

     sub bab 5.1 dapat diselesaikan dengan mudah, yaitu:

          $ jumlah=4

          $ echo "pemain musik The Beatles ada $jumlah orang"

          pemain musik The Beatles ada 4 orang

          $

          Karakter   kutip  ganda  dapat  pula  digunakan   untuk 

     menyembunyikan kutip tunggal di dalamnya.

          $ echo "gunakan disk 'bayangan'"

          gunakan disk 'bayangan'

          $

          demikian hal yang sebaliknya,

          $ echo 'saya katakan, "Gunakan pemrograman shell"'

          saya katakan, "Gunakan pemrograman shell"

          $

     7.3.3 Karakter Kutip Tunggal Terbalik 

          Tidak   seperti   karakter   kutip   sebelumnya,   yang 

     melindungi karakter khusus dari penerjemahan shell, karakter 

     kutip tunggal terbalik akan memberitahukan kepada shell agar 

     perintah  yang di dalam kutip ini dieksekusi dan  dimasukkan 

     ke keluaran standar dari perintah yang menggunakannya. 

          $ echo tanggal hari ini adalah `date`

          tanggal hari ini adalah Fri Oct 23 07:28:32 PDT 1992

          $

          Penggunaan  perintah  di dalam karakter  kutip  tunggal 

     terbalik  tidak  dibatasi hanya satu  perintah  saja.  Namun 

     demikian  perintah tersebut harus dipisahkan dengan  pemisah 

     yang diijinkan shell. 

          $ echo jumlah pemakai aktif `who | wc -l` orang

          jumlah pemakai aktif 6 orang

          $

          Karakter  kutip  tunggal terbalik dapat  diletakkan  di 

     dalam karakter kutip ganda, tetapi tidak pada karakter kutip 

     tunggal.

          $ echo "jumlah pemakai aktif `who | wc -l` orang"

          jumlah pemakai aktif 6 orang

          $ echo 'jumlah pemakai aktif `who | wc -l` orang'

          jumlah pemakai aktif `who | wc -l` orang'

          $

          Karakter  kutip tunggal terbalik juga  dapat  digunakan 

     untuk  memasukkan keluaran perintah tertentu ke dalam sebuah 

     variabel shell sebagai berikut:

          $ waktu=`date` (eksekusi date dan masukkan ke variabel)

          $ echo sekarang $waktu

          sekarang Fri Oct 23 07:28:32 PDT 1992

          $

          Mekanisme karakter kutip terbalik juga sering digunakan 

     untuk mengubah nilai yang disimpan variabel shell.  Misalnya 

     kita  ingin  mengubah nilai variabel  nama  yang  mengandung 

     huruf kecil menjadi huruf besar.

          $ nama="denny yerianto"

          $ nama=`echo $nama | tr '[a-z]' 'A-Z]'`

          $ echo $nama

          DENNY YERIANTO

          $

          Contoh lainnya:

          $ dir_ku=`pwd`

          $ root_ku=`echo $dir_ku | cut -c1`

          $ echo $root_ku

          /

          $

          Penggunaan  kombinasi  echo  dan  pemipaan  ini  sering 

     digunakan oleh para pemrogram shell dalam memanipulasi nilai 

     variabel.

     7.3.4 Karakter Garis Miring Terbalik

          Pada dasarnya, karakter garis miring terbalik  memiliki 

     fungsi yang hampir sama dengan fungsi karakter kutip tunggal 

     bagi  sebuah karakter tunggal. Format umum penggunaan  garis 

     miring terbalik adalah:

          \char

          dimana char adalah karakter tunggal. Perhatikan  contoh 

     berikut:

          $ echo >

          syntax errror: 'newline or ;' unexpected

          $ 

          Perintah ini disalahkan oleh shell karena karakter  '>' 

     adalah  karakter khusus untuk pengalihan arah keluaran  yang 

     harus  diikuti  nama  file dan bukan  oleh  karakter  khusus 

     newline. Untuk mengatasinya dapat kita gunakan garis  miring 

     terbalik.

          $ echo \>

          >

          $

          Karakter  garis miring terbalik akan menyebabkan  shell 

     mengartikan  karakter '>' sebagai karakter biasa  saja.  Hal 

     yang sama berlaku pula pada contoh di bawah ini.

          $ files=*

          $ echo \$files

          $files                   (bukan variabel shell)

          $

          Karakter  garis  miring  sering  pula  digunakan  untuk 

     membatalkan  ganti  baris,  seperti  terlihat  pada   contoh 

     berikut ini.

          $ baris=satu'

          > 'dua              

          $ echo "$baris"

          satu

          dua                 (gagal membuat satu baris)     

          $ baris=satu\       (coba dengan garis miring terbalik)

          > dua

          $ echo "$baris"

          satudua             (berhasil ...)

          $

          Karakter garis miring terbalik juga dapat kita  gunakan 

     dalam  karakter  kutip ganda, seperti terlihat  pada  contoh 

     berikut:

          $ echo "\$xxx"

          $xxx

          $ echo "\ adalah garis miring terbalik"

          \ adalah garis miring terbalik

          $ xxx=999

          $ echo "nilai xxx adalah \"$xxx\""

          nilai xxx adalah "999"

          $

          Ada  beberapa karakter khusus yang  diterjemahkan  oleh 

     perintah echo. Karakter khusus tersebut harus didahului oleh 

     karakter garis miring terbalik.

          -------------------------------------------------------

          karakter  hasil cetakan

          -------------------------------------------------------

          \b        backspace

          \c        baris tanpa diakhiri newline

          \f        formfeed

          \n        newline

          \r        Carriage return

          \t        karakter tab

          \\        karakter garis miring terbalik

          \nnn      karakter yang memiliki nilai ASCII nnn,

                    dimana nn adalah 1 s/d 3 dijit bilangan oktal

          -------------------------------------------------------

          Tabel 7.1 Karakter khusus pada garis miring terbalik

          Perhatikan contoh-contoh berikut ini:

          $ echo "satu \n dua \n tiga \n"

          satu

          dua

          tiga

          $ cat tanya1

          echo "Masukkan pilihan anda: "

          read x

          echo Masukan yang anda ketik adalah $x

          $ tanya1

          Masukkan pilihan anda:

          1234

          Masukan yang anda ketik adalah 1234

          $ cat tanya2

          echo "Masukkan pilihan anda: \c"

          read x

          echo Masukan yang anda ketik adalah $x

          $ tanya

          Masukkan pilihan anda: 56789

          Masukan yang anda ketik adalah 56789

          $

     7.4 ARGUMEN

     7.4.1 Parameter posisi

          Misalkan kita ingin mengetahui apakah seseorang  sedang 

     aktif  pada  sistim,  maka kita  dapat  melakukan  perintah-

     perintah  sebagai berikut:

          $ who

          heru       tty05        Oct 23 07:30

          root       tty01        Oct 23 07:28

          denny      tty02        Oct 23 07:28

          ucrit      tty03        Oct 23 07:29

          chaerind   tty04        Oct 23 07:30

          irmawati   tty06        Oct 23 06:50

          yono       tty07        Oct 23 07:00

          unyil      tty08        Oct 23 07:01

          $ who | grep ucrit

          ucrit      tty03        Oct 23 07:29         (hadir !)

          $

          Agar   setiap  saat  tidak  perlu   mengetik   perintah 

     tersebut,   tentunya   perintah-perintah   tersebut    harus 

     dimasukkan  ke  dalam sebuah file program dan  diberi  nama, 

     misalnya program bernama hadir. 

          $ cat hadir

          who | grep ucrit

          $ hadir 

          ucrit      tty03        Oct 23 07:29         (hadir !)

          $

          Permasalahan  yang  akan segera  timbul  dalam  program 

     tersebut   adalah  bagaimana  agar  nama  pemakainya   dapat 

     fleksibel, artinya kita dapat mengganti nama pemakai  sesuai 

     kebutuhan  tanpa harus mengubah programnya. Untuk itu,  maka 

     seperti  juga perintah lain pada Unix, program  hadir  harus 

     dirancang  dengan menggunakan argumen sehingga  format  umum 

     program hadir adalah:

          hadir pemakai

          dimana  pemakai  adalah  nama pemakai  yang  akan  kita 

     periksa  kehadirannya dalam sistem.  Bentuk  implementasinya 

     adalah dengan memanfaatkan parameter posisi.

          Setiap  saat  kita mengeksekusi sebuah  program  shell, 

     secara  otomatis  shell akan menyimpan  argumen  pertama  ke 

     dalam  variabel khusus yang dimiliki shell yang diberi  nama 

     1,  demikian  selanjutnya untuk argumen  berikutnya.  Khusus 

     variabel  0  akan  berisi  nama  program  yang   dieksekusi. 

     Variabel-variabel inilah yang disebut parameter posisi.

          $ cat coba

          echo "nama program adalah $0"

          echo "parameter pertama adalah $1"

          echo "parameter ke dua adalah $2"

          echo "parameter ke empat adalah $4"

          echo "parameter ke lima adalah $5"

          $ coba one two three four five six

          nama program adalah coba

          parameter pertama adalah one

          parameter ke dua adalah two

          parameter ke empat adalah four

          parameter ke lima adalah five

          $ coba "one two" three four five six

          nama program adalah coba

          parameter pertama adalah one two

          parameter ke dua adalah three

          parameter ke empat adalah five

          parameter ke lima adalah six 

          $

          Setiap  kita  mengeksekusi program,  kata  apapun  yang 

     mengikuti  nama  program  tersebut akan  disimpan  ke  dalam 

     parameter posisi oleh shell.

          Dengan  demikian permasalahan pada program hadir  dapat 

     kita selesaikan sebagai berikut:

          $  who

          heru       tty05        Oct 23 07:30

          root       tty01        Oct 23 07:28

          denny      tty02        Oct 23 07:28

          ucrit      tty03        Oct 23 07:29

          chaerind   tty04        Oct 23 07:30

          irmawati   tty06        Oct 23 06:50

          $ cat hadir

          #------------------------------------------

          # Program hadir versi 1.0

          # Memeriksa kehadiran pemakai dalam sistem

          #------------------------------------------

          who | grep $1

          $ hadir ucrit

          ucrit      tty03        Oct 23 07:29   (hadir !)

          $ hadir denny

          denny      tty02        Oct 23 07:28   (hadir !)

          $ hadir ibrahim                        (tidak hadir !)

          $

     7.4.2 Jumlah Variabel yang Dilewatkan

          Ketika  kita mengeksekusi program, disamping  dilakukan 

     pemasangan  terhadap variabel $1, $2 dan  seterusnya,  shell 

     juga  memasang  variabel  $#.  Variabel  $#  dipasang  untuk 

     mengetahui  banyaknya  argumen  yang  dikirim.  Untuk  lebih 

     jelasnya, perhatikan contoh-contoh berikut ini.

          $ cat argumen                 (isi program argumen)

          #---------------------------

          # Program argumen versi 1.0

          # Contoh pemanfaatan argumen

          #---------------------------

          echo jumlah argumen yang dikirim adalah $# buah

          echo arg1 = :$1: arg2 = :$2: arg3 = :$3:

          $ argumen a b c               (coba eksekusi)

          jumlah argumen yang dikirim adalah 3 buah

          arg1 = :a: arg2 = :b: arg3 = :$c:

          $ argumen a c                 (dengan 2 argumen)

          jumlah argumen yang dikirim adalah 2 buah

          arg1 = :a: arg2 = :c: arg3 = ::

          $ argumen                     (tanpa argumen)

          jumlah argumen yang dikirim adalah 0 buah

          arg1 = :: arg2 = :: arg3 = ::

          $ argumen "a b c"             (dalam kutip ganda)

          jumlah argumen yang dikirim adalah 1 buah

          arg1 = :a b c: arg2 = :: arg3 = ::

          $ ls *

          argumen

          file1

          file2

          $ argumen *                   (substitusi nama file)

          jumlah argumen yang dikirim adalah 3 buah

          arg1 = :argumen: arg2 = :file1: arg3 = :file2:

          $ dir_ku=/home/s1_87/widji

          $ argumen $dir_ku             (substitusi variabel)

          jumlah argumen yang dikirim adalah 1 buah

          arg1 = :/home/s1_87/widji: arg2 = :: arg3 = ::

          $ cat file1

          unyil

          usro

          ucrit

          cuplis

          menik

          ogah

          ableh

          $ argumen `cat file1`         (dari file)

          jumlah argumen yang dikirim adalah 7 buah

          arg1 = :unyil: arg2 = :usro: arg3 = :ucrit:

          $

          Dengan demikian kita dapat melakukan pengiriman argumen 

     tanpa harus mendefinisikannya terlebih dahulu. 

     7.4.3 Variabel semua argumen

          Variabel khusus $* berisi semua argumen yang dilewatkan 

     ke dalam program. Perhatikan contoh pemakaian dalam  program 

     argumen versi 2.0.

          $ cat argumen

          #---------------------------------

          # Program argumen versi 2.0

          # Contoh pemakaian program argumen

          #---------------------------------

          jumlah argumen yang dikirim adalah $# buah

          yaitu :$*:

          $ argumen aa bb cc

          jumlah argumen yang dikirim adalah 3 buah

          yaitu :aa bb cc:

          $ argumen aa       bb cc

          jumlah argumen yang dikirim adalah 3 buah

          yaitu :aa bb cc:

          $ argumen 

          jumlah argumen yang dikirim adalah 0 buah

          yaitu ::

          $ ls

          argumen

          file1

          file2

          file3

          $ argumen *

          jumlah argumen yang dikirim adalah 4 buah

          yaitu :argumen file1 file2 file3:

          $

     7.4.4 Menggeser Parameter Posisi

          Jika kita menggunakan argumen lebih dari sembilan  buah 

     pada   suatu  program,  timbul  suatu   permasalahan   baru. 

     Perhatikan contoh berikut ini.

          $  cat lebih10

          #-------------------------------------------

          # Program lebih10 versi 1.0

          # Contoh program dengan argumen lebih dari 9

          #-------------------------------------------

          echo jumlah argumen $# buah

          argumen ke sepuluh adalah :$10:

          $ lebih10 a b c d e f g i j

          jumlah argumen 10 buah

          argumen ke sepuluh adalah :a0:

          $

          Akses argumen ke sepuluh menghasilkan hasil yang  tidak 

     diinginkan.  Nilai  yang tampil ternyata adalah  nilai  dari 

     variabel  $1 dan diikuti 0. Kita hanya  diijinkan  mengakses 

     variabel $1 sampai dengan $9.

          Ada  sebuah  cara untuk mengakses variabel  yang  lebih 

     dari  sembilan,  yaitu  dengan teknik  penggeseran  ke  kiri 

     (shift left) nilai variabel dari parameter posisi yang  kita 

     miliki tersebut, caranya dengan menggunakan perintah  shift. 

     Perintah  ini  akan  memindahkan nilai  dari  variabel  pada 

     parameter posisi ke dalam variabel sebelumnya. 

                                  $1   $2   $3                              

          +-------+   argumen   +----+----+----+

          | shift |<------------| aa | bb | cc |   $# = 3

          +---+---+             +----+----+----+

              |

              |                 +----+----+

              +---------------->| bb | cc |        $# = 2

                                +----+----+

                              Gambar 7.1 Proses shift

          Misalnya  kita  memiliki parameter posisi $1,  $2,  $3. 

     Jika kita geser sekali (shift left) maka nilai dari variabel 

     $3 lama akan berpindah ke dalam variabel $2 baru. Nilai dari 

     variabel  $2 lama akan berpindah ke dalam variabel $1  baru. 

     Sedangkan  nilai  dari  variabel $1  lama  akan  menghilang. 

     Sementara itu, variabel $# akan otomatis dikurang satu.

          $ cat geser

          #----------------------------------

          # Program geser versi 1.0

          # Contoh menggeser parameter posisi

          #----------------------------------

          echo $# $*

          shift

          echo $# $*

          shift

          echo $# $*

          shift

          echo $# $*

          shift

          echo $# $*

          shift

          echo $# $*

          shift

          $ geser a b c d e

          5 a b c d e

          4 b c d e

          3 c d e

          2 d e

          1 e

          0

          $

          Jika  kita masih melakukan penggeseran ke  kiri  dengan 

     shift, sementara itu variabel yang akan digeser sudah  tidak 

     ada lagi, maka shell akan menampilkan pesan sebagai berikut:

          $  geser a b c d

          4 b c d e

          3 c d e

          2 d e

          1 e

          0

          geser: cannot shift

          $

          Pada  contoh  di  atas, pergeseran  yang  kita  lakukan 

     adalah  geser ke kiri satu kali. Kita dapat menggeser  lebih 

     dari satu kali sebagai berikut:

          shift n

          dimana  n  adalah bilangan  banyaknya  pergeseran  yang 

     ingin dilakukan. Operasi tersebut adalah sama dengan  proses 

     shift yang berulang-ulang.

          shift 3  

          identik dengan

          shift

          shift

          shift

          Jadi   jika  sebuah  program  menginginkan   akses   ke 

     parameter   posisi  kesepuluh,  dengan  mudah   kita   dapat 

     melakukan  dengan menggunakan perintah shift  dan  mengakses 

     nilai $9. 

          arg1=$1

          shift

          arg10=$9

     7.5 KENDALI PILIHAN

     7.5.1 Status Keluar

          Setiap  program  yang telah melakukan  eksekusi  secara 

     lengkap  pada sistem Unix akan mengembalikan  status  keluar 

     atau  exit  status kepada sistem. Status ini  adalah  berupa 

     bilangan  yang  biasanya menunjukkan  apakah  suatu  program 

     telah berhasil dijalankan atau tidak. 

          Berdasarkan konvensi, nilai status keluar nol digunakan 

     untuk menunjukkan bahwa program telah dieksekusi dan  benar, 

     sedangkan  nilai  selain nol akan diartikan  sebagai  adanya 

     kesalahan.   Kesalahan  dapat  disebabkan  oleh   pengiriman 

     argumen  yang tidak benar atau oleh kondisi lain yang  tidak 

     diijinkan   oleh   program.   

          Dalam  pemipaan,  status keluar  yang  dikembalikan  ke 

     sistem  adalah status dari perintah terakhir dalam  pemipaan 

     tersebut. 

          who | grep root

          status  keluar  pada  proses  pemipaan   yang  diterima 

     sistem  adalah  status keluar dari peritah  grep.  Jadi  jka 

     status  keluar  nol, berarti root  ditemukan  oleh  perintah 

     grep.

          Untuk  melihat  status keluar, kita  dapat  menggunakan 

     variabel  khusus  shell $?. Variabel  $?  otomatis  bernilai 

     status  keluar dari perintah terakhir yang  dieksekusi  oleh 

     shell. Perhatikan contoh berikut ini.

          $ cp file1 file2

          $ echo $?                          

          0                                 (copy berhasil)

          $ cp kosong file3

          cp: cannot access kosong          (copy gagal)

          $ echo $?

          2                                 (status keluar gagal)

          $ who

          heru       tty05        Oct 23 07:30

          root       tty01        Oct 23 07:28

          denny      tty02        Oct 23 07:28

          ucrit      tty03        Oct 23 07:29

          chaerind   tty04        Oct 23 07:30

          irmawati   tty06        Oct 23 06:50

          yono       tty07        Oct 23 07:00

          unyil      tty08        Oct 23 07:01

          $ who | grep unyil

          unyil      tty08        Oct 23 07:01

          $ echo $?                         (status keluar grep)

          0                                 (grep berhasil)                         

          $ who | grep udin

          $ echo $?

          1                                 (grep tak berhasil)

          $ echo $?

          0                                 (status keluar echo)

          $

     7.5.2 Pengujian Kondisi

          Perintah   test   sering  digunakan   untuk   melakukan 

     pengujian  terhadap  satu atau lebih  kondisi  dalam  sebuah 

     kendali pilihan. Format umum yang digunakan adalah:

          test ekspresi

          dimana ekspresi merupakan kondisi yang akan diuji. test 

     akan   mengevaluasi  dan  jika  hasilnya  true   maka   akan 

     dikembalikan  status  keluar nol; jika hasilnya  false  maka 

     akan dikembalikan status keluar tidak nol.

          Disamping  menggunakan  perintah test,  para  pemrogram 

     dapat menggunakan:

          [ ekspresi ] 

          Operator yang dapat digunakan pada perintah test ada  4 

     jenis, yaitu:

          - operator string

          - opertor integer

          - operator file

          - operator boolean

     7.5.2.1 Operator Untaian Karakter

          Contoh  berikut  akan mengembalikan status  keluar  nol 

     jika variabel shell berisi karakter yang sama:

          $ nama=chaerinda

          $ test "$nama" = chaerinda

          $ echo $?

          0

          $ nama=novrita

          $ test "$nama" = chaerinda

          $ echo $?

          1

          $

          Pemrogram   yang  baik  akan   senantiasa   menggunakan 

     karakter kutip ganda bagi variabel yang digunakan pada test. 

     Perhatikan contoh berikut.

          $ nama=

          $ test $nama = chaerinda

          sh: test: argument expected

          $

          Karena  nama  berisi  nilai null,  maka  perintah  test 

     pertama  dianggap  memiliki  dua argumen saja,  yaitu  =  dan 

     chaerinda,  padahal test membutuhkan tiga argumen  !  

          Dengan  memberikan karakter kutip ganda  pada  variabel 

     tersebut  akan  memastikan test  melihat  variabel  tersebut 

     sebagai argumen walaupun bernilai null. 

          $ nama=novrita

          $ test "$nama" = chaerinda

          $ echo $?

          1

          $         

          Perintah  test  di  atas  dapat  kita  lakukan   dengan 

     menggunakan  kurung siku (akan lebih banyak  digunakan  pada 

     buku ini).

          $ nama=chaerinda

          $ [ "$nama" = chaerinda ]

          $ echo $?

          0

          $ nama=novrita

          $ [ "$nama" = chaerinda ]

          $ echo $?

          1

          $

          Awas,  jangan  lupa  memberikan  spasi  atau  tab  pada 

     setelah [ dan sebelum ]. Sekarang perhatikan lagi  bagaimana 

     spasi dapat mengacaukan dugaan kita.

          $ hari="senen " 

          $ [ "$hari" = senen ] 

          $ echo $?

          1

          $

          Disamping  operator  =,  masih  ada  beberapa  operator 

     string lainnya seperti terlihat pada tabel berikut:

          -------------------------------------------------------

          Operator              Kondisi benar (status keluar nol)

          -------------------------------------------------------

          string1 = string2     string1 identik string2

          string1 != string2    string1 tak identik string2

          string                string tak null

          -n string             string tak null

          -z string             string adalah null

          -------------------------------------------------------

                       Tabel 7.2 Operator string

          Fungsi  operator  != adalah  keterbalikan  dari  fungsi 

     operator =. Perhatikan contoh berikut ini.

          $ nama=chaerinda

          $ [ "$nama" = chaerinda ]

          $ echo $?

          0

          $ nama=novrita

          $ [ "$nama" != chaerinda ]

          $ echo $?

          0

          $

          Dengan operator string, kita dapat  membuktikan  apakah 

     variabel yang berisi spasi dapat dikatakan null atau tidak.

          $ blank="   "

          $ [ $blank ]                  (string tak null ?)

          $ echo $?

          1                             (null !)

          $ [ "$blank" ]

          $ echo $?

          0                             (bukan null)

          $         

          Pada  pengujian  pertama, tak ada  argumen  yang  diuji 

     karena  shell  menganggap isi dari  variabel  blank  sebagai 

     argument  delimiter,  sehingga shell  menganggap  tidak  ada 

     argumen  yang dikirim. Pada pengujian ke dua terlihat  bahwa 

     shell  mengartikan  bahwa  ada  argumen  yang  dikirim   dan 

     diartikan sebagai spasi dan bukan null.

          Pemeriksaan ini juga dapat dilakukan dengan menggunakan 

     operator pengujian -n dan -z.

          $ nullvar=

          $ blank="   "

          $ [ -n $blank ]                  (string tak null ?)

          $ echo $?

          1                             (null !)

          $ [ -n "$blank" ]

          $ echo $?

          0                             (bukan null)

          $ [ -n "$nullvar" ]

          $ echo $?

          1

          $ [ -z "$blank" ]

          $ echo $?

          1

          $ [ -z "$nullvar" ]

          $ echo $?

          0

          $

          Pengujian  ini  harus berhati-hati  terhadap  isi  dari 

     variabel  yang  akan diuji. Sebab jika nilai  dari  variabel 

     yang akan diuji berisi operator pengujian maka hasilnya akan 

     berbeda  dengan  yang  kita  kehendaki.  Perhatikan   contoh 

     berikut ini

          $ simbol=`=`

          $ test -z "$simbol" 

          sh: test: argument expected

          $

          Operator  =  memiliki derajat yang  lebih  tinggi  dari 

     operator -z sehingga pengujian lebih mendahulukan operator = 

     dari  pada operator -z. Untuk mengatasi hal ini  dapat  kita 

     gunakan sedikit trik sebagai berikut:

          $ test  X"$simbol" = X

          Trik ini akan mengembalikan status keluar 0 jika  nilai 

     variabel simbol adalah null.

     7.5.2.2 Operator Integer

          Shell juga memiliki fasilitas perbandingan integer yang 

     disebut operator integer. Operator tersebut yaitu:

          -------------------------------------------------------

          Operator         Kondisi benar (status keluar nol)

          -------------------------------------------------------

          int1 -eq int2    int1 sama dengan int2

          int1 -ge int2    int1 lebih besar sama dengan int2

          int1 -gt int2    int1 lebih besar int2

          int1 -le int2    int1 lebih kecil sama dengan int2

          int1 -lt int2    int1 lebih kecil int2

          int1 -ne int2    int1 tidak sama dengan int2

          -------------------------------------------------------

                      Tabel 7.3 Operator integer

          Perhatikan contoh-contoh berikut:

          $ a=1

          $ b=2

          $ c=3

          $ [ "$a" -eq 1 ]

          $ echo $?

          0

          $ [ "$c" -ge "$b" ] 

          $ echo $?

          0

          $ [ "$c" -le "$c" ]

          $ echo $?

          0

          $ [ 1 -lt 10 ]

          $ echo $?

          0

          $

          $ [ 1 -ne 10 ] 

          $ echo $?

          0

          $

          Ingat bahwa shell tidak membedakan type data dari nilai 

     yang disimpan oleh variabel, semuanya adalah karakter biasa. 

     Operator  test  akan  menerjemahkan  nilai-nilai  dari  yang 

     terkandung dalam variabel sebagai integer, bukan shell.

          Sekarang   perhatikan  beberapa  contoh  kasus   antara 

     integer dan string.

          $ x1="007"

          $ x2="  10"

          $ [ "$x1" = 7 ]                  (perbandingan string)

          $ echo $?

          1

          $ [ "$x1" -eq 7 ]                (perbandingan integer)

          $ echo $?

          0

          $ [ "$x2" = 10 ]                 (perbandingan string)

          $ echo $?

          1

          $ [ "$x2" -eq 10 ]               (perbandingan integer)

          $ echo $?

          0

          $

          Pada pengujian pertama menggunakan perbandingan  string 

     dengan operator =. Hasilnya tidak benar karena kedua  string 

     tidak cocok benar

                    007 = 7

          Berbeda   dengan   perbandingan  string   pada   contoh 

     pengujian pertama, pengujian ke dua menggunakan perbandingan 

     integer  dengan  menggunakan operator  -eq.  Hasilnya  tentu 

     benar, karena  007 adalah bernilai equivalen dengan 7.

     7.5.2.3 Operator File

          Pada   pemrograman  shell,  penggunaan   file   sebagai 

     penyimpanan  permanen atau penyimpanan sementara adalah  hal 

     yang biasa karena mudah dan praktis (perhatikan  pemanfaatan 

     file  /dev/null  atau file sementara pada  direktori  /tmp). 

     Untuk   kebutuhan  ini,  terkadang  kita   perlu   melakukan 

     pemeriksaan  terhadap kondisi file dan  direktori  tersebut. 

     Perhatikan tabel berikut ini:

          -------------------------------------------------------

          Operator       Kondisi benar (status keluar nol)

          -------------------------------------------------------

          -d file        file adalah direktori

          -f file        file adalah file biasa

          -r file        file dapat dibaca oleh proses

          -s file        file memiliki panjang tak nol

          -w file        file dapat ditulis oleh proses

          -x file        file dapat dieksekusi

          -------------------------------------------------------

                      Tabel 7.4 Operator file

          Dengan  demikian jika kita ingin memeriksa apakah  file 

     /usr/denny ada atau tidak dapat kita lakukan hal berikut:

          $ [ -f /usr/denny ]

          $ echo $?

          0                        (file /usr/denny ada)

          $ [ -d /usr ]

          $ echo $?

          0                        (direktori /usr ada)

          $ [ -x /etc/passwd ]

          $ echo $?                (tidak dapat dieksekusi)

          1

          $ [ -w /etc/passwd ] 

          $ echo $?

          1                        (tak dapat ditulis)

          $

     7.5.2.4 Operator Boolean

          Operator  boolean yang dapat digunakan  pada  pemrogram 

     shell adalah sebagai berikut:

          - negasi, yaitu  !

          - AND, yaitu -a     

          - OR, yaitu -o

          Perhatikan  daftar nilai hasil operasi boolean  berikut 

     ini:

          Operator !

          ---------------

          expr  | hasil !

          ------+--------

          benar | salah

          salah | benar

          ---------------

          Tabel 7.5 Operasi negasi

          Operator  !  dapat diletakkan pada  ekpresi  pengujian. 

     Perhatikan contoh berikut:

          $ [ -f /usr/denny ]

          $ echo $?

          0

          $ [ ! -f /usr/denny ]

          $ echo $?

          1

          $

          Perhatikan  pernyataan  berikut,  dimana   pemanfaatkan 

     operator  ! pada keduanya  menghasilkan nilai status  keluar 

     yang sama.

          $ x1=999

          $ x2=777

          $ [ ! "$x1" = "$x2" ]

          $ echo $?

          0

          $ [ "$x1" != "$x2" ]

          $ echo $?

          0

          $

          Perhatikan  daftar nilai hasil operasi boolean  berikut 

     ini:

          Operator -a

          ---------------------

          expr1 | expr2 | hasil

          ------+-------+------

          benar | benar | benar

          benar | salah | salah

          salah | benar | salah

          salah | salah | salah

          ---------------------

          Tabel 7.6 Operasi AND

          Operator  -a (logika AND) akan memberikan  nilai  benar 

     atau  status  keluar  0 jika kedua  ekspresi  yang  digabung 

     memiliki nilai benar.

          [ -f "$mailfile" -a -r "$mailfile" ]

          Pernyataan   diatas  akan  bernilai  benar  jika   file 

     $mailfile  adalah  sebuah file biasa dan dapat  dibaca  oleh 

     kita.

          Perlu diketahui bahwa operator boolean memiliki derajat 

     yang lebih rendah dibanding operator lainnya.

          [ "$x1" -ge 0 -a "$x2" -lt 888 ]

          Operasi yang akan dilakukan adalah operasi perbandingan 

     integer   terlebih  dahulu,  kemudian  dilanjutkan   operasi 

     perbandingan boolean.

          Perhatikan  daftar nilai hasil operasi boolean  berikut 

     ini:

          Operator -o

          ---------------------

          expr1 | expr2 | hasil

          ------+-------+------

          benar | benar | benar

          benar | salah | benar

          salah | benar | benar

          salah | salah | salah

          ---------------------

          Tabel 7.7 Operasi OR

          Operator  -o (logika OR)  akan memberikan  nilai  benar 

     atau status 0 jika salah satu ekspresi memiliki nilai benar. 

          Operator   -o  memiliki  derajat  yang   lebih   rendah 

     dibanding operator -a. Perhatikan contoh berikut:

          $ [ 1 -eq 1 -o 1 -ge 0 -a 0 -lt 0 ]

          $ echo $?

          0

          $

          Mengapa demikian ? Hal ini dikarenakan derajat operator 

     -a  lebih  tinggi dibanding operator -o.  Pernyataan  diatas 

     dapat kita tulis sebagai berikut:

          1 = 1  OR  ( 1 >= 0  AND  0 < 0 )

          Kita  dapat mengubah operasi pengerjaan di atas  dengan 

     memberikan  karakter  kurung. Operasi bertanda  kurung  akan 

     dikerjakan terlebih dahulu. Hal ini dalam pemrograman  shell 

     dapat dinyatakan sebagai berikut:

          $ [ 1 -eq 1 -o 1 -ge 0 -a 0 -lt 0 ]

          $ echo $?

          0

          $ [ 1 -eq 1 -o \( 1 -ge 0 -a 0 -lt 0 \) ]

          $ echo $?

          0

          $ [ \( 1 -eq 1 -o 1 -ge 0 \) -a 0 -lt 0 ]

          $ echo $?

          1

          $

     7.5.3 Perintah if-then-else

          Hampir pada seluruh bahasa pemrograman memiliki kendali 

     pilihan,  termasuk  juga shell. Salah satu  kendali  pilihan 

     tradisional adalah if. Perintah if akan melakukan  pengujian 

     atas  kondisi yang diberikan kepadanya dan akan  mengarahkan 

     alur  program sesuai dengan hasil pengujiannya. Format  umum 

     perintah if adalah:

          if perintahT

          then

               perintah

               perintah

               ...

          fi

          dimana kondisi yang akan diuji oleh perintah if  adalah 

     status keluar dari perintahT. Jika status keluar adalah nol, 

     maka perintah-perintah yang terletak antara then dan fi akan 

     dieksekusi, jika tidak maka perintah-perintah tersebut  akan 

     diabaikan.

          Sekarang marilah kita perhatikan contoh program berikut 

     ini.  Program  ini  adalah modifikasi  dari  program  hadir, 

     seperti yang telah kita buat pada bab sebelumnya, yaitu yang 

     berfungsi  untuk memeriksa apakah seseorang yang  kita  cari 

     sedang aktif dalam sistem atau tidak.

          $ cat hadir

          #------------------------------------------

          # Program hadir versi 2.0

          # Memeriksa kehadiran sesorang dalam sistem

          #------------------------------------------

          pemakai="$1"

          if who | grep "$pemakai"

          then

               echo "^$pemakai sedang aktif"

          fi

          $

          Argumen  pertama  yang diketikan  adalah  sebagai  nama 

     pemakai  yang  akan kita  periksa  kehadirannya.  Perhatikan 

     hasil unjuk kerjanya.

          $ who

          heru       tty05        Oct 23 07:30

          root       tty01        Oct 23 07:28

          denny      tty02        Oct 23 07:28

          ucrit      tty03        Oct 23 07:29

          chaerind   tty04        Oct 23 07:30

          irmawati   tty06        Oct 23 06:50

          yono       tty07        Oct 23 07:00

          unyil      tty08        Oct 23 07:01

          $ hadir ucrit                          (ucrit hadir)

          ucrit      tty03        Oct 23 07:29   (dari mana ini?)

          ucrit sedang aktif

          $ hadir udin                           (udin tak hadir)

          $ hadir wati                           (wati tak hadir)

          $

          Dari  contoh  di atas, kita melihat  adanya  pernyataan 

     yang muncul dan tak kita duga sebelumnya, yaitu:

          ucrit      tty03        Oct 23 07:29   

          Tampaknya  hal  ini disebabkan  oleh  pernyataan  dalam 

     program hadir kita, yaitu:

          who | grep "$pemakai"

          Perintah  tersebut menampilkan hasil  operasi  perintah 

     grep ke layar. Sesungguhnya yang kita perlukan adalah status 

     keluar dari perintah who  dan grep yang akan digunakan  oleh 

     perintah  if  untuk pengujian kondisi, bukan  keluaran  dari 

     kedua operasi perintah tersebut.

          Untuk  mengatasi  hal ini maka keluaran  dari  perintah 

     grep  harus  kita  arahkan ke non  layar,  pada  umumnya  di 

     alihkan ke file /dev/null. File ini adalah file khusus  pada 

     sistem  dimana  semua orang dapat membaca  atau  menulis  ke 

     dalamnya.   Jika  kita  menulis  ke  dalamnya,  maka   hasil 

     tulisannya  langsung menghilang. Dengan demikian kita  tidak 

     perlu   repot-repot  menghapus  keluaran  kita   pada   file 

     tersebut.  File  ini  sering  disebut  sebagai  file  tempat 

     sampah,  karena  semua  keluaran yang  tidak  kita  inginkan 

     biasanya  dikirim ke file ini. Dengan demikian program  kita 

     akan menjadi sebagai berikut.

          $ cat hadir

          #------------------------------------------

          # Program hadir versi 3.0

          # Memeriksa kehadiran sesorang dalam sistem

          #------------------------------------------

          pemakai="$1"

          if who | grep "^$pemakai" > /dev/null

          then

               echo "^$pemakai sedang aktif"

          fi

          $

          Sehingga hasil yang akan kita peroleh pada  pemeriksaan 

     pemakai sebagai berikut:

          $ who

          heru       tty05        Oct 23 07:30

          root       tty01        Oct 23 07:28

          denny      tty02        Oct 23 07:28

          ucrit      tty03        Oct 23 07:29

          chaerind   tty04        Oct 23 07:30

          irmawati   tty06        Oct 23 06:50

          yono       tty07        Oct 23 07:00

          unyil      tty08        Oct 23 07:01

          $ hadir ucrit                          (ucrit hadir)

          ucrit sedang aktif

          $ hadir udin                           (udin tak hadir)

          $ hadir                                (tanpa argumen!) 

          $

          Konstruksi  else dapat kita tambahkan pada perintah  if 

     jika diinginkan dengan menggunakan format:

          if perintahT

          then

               perintahB

               perintahB

               ...

          else

               perintahS

               perintahS

               ...

          fi

          dimana kondisi yang akan diuji oleh perintah if  adalah 

     status keluar dari perintahT. Jika status keluar adalah  nol 

     (true),   maka  perintah-perintah  yang  dieksekusi   adalah 

     perintahB,  jika  status keluarnya tidak  nol  (false)  maka 

     perintah-perintah   pada  perintahB  akan  dilewati   (tidak 

     dieksekusi) dan perintahS saja yang akan dieksekusi.

          Sebagai contoh, marilah kita modifikasi kembali program 

     hadir kita.

          $ cat hadir

          #------------------------------------------

          # Program hadir versi 4.0

          # Memeriksa kehadiran sesorang dalam sistem

          #------------------------------------------

          pemakai="$1"

          if who | grep "^$pemakai" > /dev/null

          then

               echo "^$pemakai sedang aktif"

          else

               echo "^$pemakai tidak aktif"

          fi

          $

          Jika  pemakai  yang kita periksa tidak ada,  maka  akan 

     diberikan  pesan bahwa pemakai yang kita cari  sedang  tidak 

     aktif.

          $ who

          heru       tty05        Oct 23 07:30

          root       tty01        Oct 23 07:28

          denny      tty02        Oct 23 07:28

          ucrit      tty03        Oct 23 07:29

          chaerind   tty04        Oct 23 07:30

          irmawati   tty06        Oct 23 06:50

          yono       tty07        Oct 23 07:00

          unyil      tty08        Oct 23 07:01

          $ hadir ucrit                          (ucrit hadir)

          ucrit sedang aktif

          $ hadir udin                           (udin tak hadir)

          udin tidak aktif                       (diberi pesan)

          $

          Terkadang  kita  membutuhkan suatu  baris  yang  berisi 

     tidak  ada perintah. Perintah seperti ini  disebut  perintah 

     null. Format umum perintah tersebut adalah:

          :

          tugasnya  adalah  tidak  melakukan  apa-apa.  Lalu  apa 

     manfaatnya ? Perhatikan perintah berikut ini:

          $ cat rekening

          #---------------------------

          # Program rekening versi 1.0 

          # Memeriksa rekening pemakai

          #---------------------------

          if grep "$1" /etc/passwd > /dev/null

          then

               :

          else

               echo "Awas, rekening $1 hilang !"

          fi

          $

          Program  di atas akan memberitahu kita jika  nama  yang 

     kita  kirim tidak  terdaftar pada file  /etc/passwd  hilang. 

     Jika  nama  tersebut ada, maka program di  atas  tidak  akan 

     menampilkan apa-apa.

          $ rekening root                         (root ada!)

          $ 

          Shell   juga  memiliki  perintah   untuk   menghentikan 

     eksekusi  perintah selanjutnya, yaitu  menggunakan  perintah 

     exit. Format umumnya adalah:

          exit bil

          dimana  bil  adalah  bilangan  yang  merupakan   status 

     keluarnya. Perhatikan hasil eksekusi program rekening.

          $ rekening root

          $ echo $?

          0                                (root ada)

          $ rekening sikabayan

          Awas, rekening sikabayan hilang !

          $ echo $?

          0                                (sikabayan tidak ada?) 

     $

          Mari   kita   modifikasi   program   tersebut    dengan 

     menambahkan perintah exit.

          $ cat rekening

          #-----------------------------

          # Program rekening versi 2.0 

          # Memberi contoh perintah null

          #-----------------------------

          if grep "$1" /etc/passwd > /dev/null

          then

               :

          else

               echo "Awas, rekening $1 hilang !"

               exit 1

          fi

          $

          Selanjutnya  kita  lihat  hasil  perubahannya   sebagai 

     berikut:

          $ rekening root

          $ echo $?

          0                                (root ada)

          $ rekening sikabayan

          Awas, rekening sikabayan hilang !

          $ echo $?

          1                                (sikabayan tidak ada?) 

          $

     7.5.4 Mengatasi if-then-else yang Rumit dengan elif

          Ketika  program  anda semakin komplek,  terkadang  kita 

     sering  terpaksa  harus menuliskan perintah if di  dalam  if  

     yang telah kita buat, misalnya:

          if perintah1

          then

               perintah

               perintah

               ...

          else

               if perintah2

               then

                    perintah

                    perintah

                    ...

               else

                    ...

                         if perintahn

                         then

                              perintah

                              perintah

                              ...

                         else

                              perintah

                              perintah

                              ...

                         fi

                    ...

               fi

          fi

          Berikut ini akan diberikan contoh program yang terpaksa 

     menggunakan  bentuk  if-then-else yang  rumit.  Program  ini 

     diberi  nama  program  selamat  yang  akan  mencetak  ucapan 

     "selamat  pagi", "selamat siang" dan "selamat malam"  ketika 

     kita masuk ke dalam sistim (loggin).

          Untuk  membuat  program  ini  kita  dapat  memanfaatkan 

     program date.

          $ date

          Fri Oct 23 07:28:32 PDT 1992

          $

          dari  keluaran  ini kita dapat memeriksa jam  saat  ini 

     dengan cara memeriksa karakter ke 12 dan 13.

          $ date | cut -c12-13

          07

          $

          Selanjutnya  waktu  tersebut kita  kategorikan  menjadi 

     tiga bagian:

          00 s/d 11  "selamat pagi"

          12 s/d 17  "selamat siang"

          18 s/d 23  "selamat malam"

          Sehingga dengan demikian kita dapat membuat  programnya 

     sebagai berikut:

          $ cat selamat

          #---------------------------

          # Program selamat versi 1.0 

          # Mencetak ucapan selamat

          #---------------------------

          jam=`date | cut -c12-13`

          if [ "$jam" -ge 0 -a "$jam" -le 11 ]

          then

               echo "selamat pagi"

          else

               if [ "$jam" -ge 12 -a "$jam" -le 17 ]

               then

                    echo "selamat siang"

               else

                    echo "selamat malam"

               fi

          fi

          $ date

          Fri Oct 23 07:28:32 PDT 1992

          $ selamat

          selamat pagi

          $

          Penggunaan if-then-else yang rumit seperti pada  contoh 

     program   selamat    ini  dapat  kita  sederhanakan   dengan 

     menggunakan  konstruksi   elif  yang  memiliki  format  umum 

     sebagai berikut:

          if perintah1

          then

               perintah

               perintah

               ...

          elif perintah2

          then

               perintah

               perintah

               ...

          elif perintahn

          then

               perintah

               perintah

               ...

          else

               perintah

               perintah

               ...

          fi

          Bandingkan  dengan konstruksi if-then-else  sebelumnya. 

     Dengan  demikian  program selamat  dapat  kita  sederhanakan 

     menjadi sebagai berikut:

          $ cat selamat

          #---------------------------

          # Program selamat versi 2.0 

          # Mencetak ucapan selamat

          #---------------------------

          jam=`date | cut -c12-13`

          if [ "$jam" -ge 0 -a "$jam" -le 11 ]

          then

               echo "selamat pagi"

          elif [ "$jam" -ge 12 -a "$jam" -le 17 ]

          then

               echo "selamat siang"

          else

               echo "selamat malam"

          fi

          $ date

          Fri Oct 23 07:28:32 PDT 1992

          $ selamat

          selamat pagi

          $

     7.5.5 Perintah case

          Perintah case dapat melakukan pembandingan sebuah nilai 

     variabel  dengan  nilai lainnya dan apabila  nilai  variabel 

     tersebut cocok dengan nilai yang dibandingkan, maka perintah 

     yang   terletak   dibawah  nilai  yang   dibandingkan   akan 

     dieksekusi  hingga ditemukan karakter-karakter ';'.  Format 

     perintah ini adalah:

          case nilai in

               pola1)    perintah

                         perintah

                         ...

                         perintah;;

               pola2)    perintah

                         perintah

                         ...

                         perintah;;

               ...

               polan)    perintah

                         perintah  

                         ...

                         perintah;;

          esac

          Kata nilai akan dibandingkan dengan nilai yang ada pada 

     pola1,  pola2, ..., polan hingga ditemukan pola yang  cocok. 

     Jika ditemukan pola yang cocok, maka perintah yang  terletak 

     mengikuti  pola yang cocok akan dieksekusi hingga  ditemukan 

     karakter ;;.  Setelah karakter ;; ditemukan maka proses case 

     akan  dihentikan,  jika tidak maka tak satu  perintah  dalam 

     lingkup case akan dijalankan.

          Contoh  penggunaan  case adalah seperti  tertulis  pada 

     program nomor berikut.

          $ cat nomor

          #------------------------

          # Program nomor versi 1.0

          # Menerjemahkan angka 

          #------------------------

          if [ "$#" -ne 1 ]

          then

               echo "Cara pakai: nomor bilangan"

          else

            case "$1"

            in

               0)   echo nol;;

               1)   echo satu;;

               2)   echo dua;;

               3)   echo tiga;;

               4)   echo empat;;

               5)   echo lima;;

               6)   echo enam;;

               7)   echo tujuh;;

               8)   echo delapan;;

               9)   echo sembilan;;

            esac

          fi

          $ nomor 3

          tiga

          $ nomor 0

          nol

          $ nomor                       (tanpa bilangan)

          Cara pakai: nomor bilangan

          $ nomor 19                    (bilangan tak dikenal)

          $

          Pola pada case dapat kita ganti dengan karakter  khusus 

     yang dikenal oleh shell seprti *, [ ... ] atau ?

          Pada  program  nomor,  bilangan selain 0  s/d  9  belum 

     didefinisikan.   Kita  dapat  mendefinisikan  10   s/d   tak 

     terhingga dengan menggunakan karakter khusus *.

          $ cat nomor

          #------------------------

          # Program nomor versi 2.0

          # Menerjemahkan angka 

          #------------------------

          if [ "$#" -ne 1 ]

          then

               echo "Cara pakai: nomor bilangan"

          else

            case "$1"

            in

               0)   echo nol;;

               1)   echo satu;;

               2)   echo dua;;

               3)   echo tiga;;

               4)   echo empat;;

               5)   echo lima;;

               6)   echo enam;;

               7)   echo tujuh;;

               8)   echo delapan;;

               9)   echo sembilan;;

               *)   echo "Argumen harus dijit tunggal !";;

            esac

          fi

          $ nomor 19                    (bilangan tak dikenal)

          Argumen harus dijit tunggal !

          $

          Contoh  lain dari pemanfaatkan karakter  khusus  adalah 

     sebagai berikut:

          $ cat karakter

          #---------------------------------------------------          

          # Program karakter versi 1.0

          # Menebak karakter tunggal yang dikirim dari argumen

          #---------------------------------------------------

                    if [ "$#" -ne 1 ]

                    then

                         echo "Cara pakai: karakter char"

                         exit 1

                    fi

                    case "$1"

                    in

               [0-9] )   echo dijit;;

               [a-z] )   echo huruf kecil;;

               [A-Z] )   echo huruf besar;;

                   ? )   echo karakter khusus;;

                   * )   echo "harus karakter tunggal !"

                    esac

          $ karakter a

          huruf kecil

          $ karakter A

          huruf besar

          $ karakter '>'

          karakter khusus

          $ karakter USA

          harus karakter tunggal !

          $

          Di  antara  dua pola pada case  dapat  diberi  operator 

     logika OR dengan cara sebagai berikut:

          pola1 | pola2

          Dengan    menggunakan   cara   tersebut   kita    dapat 

     menyederhanakan program selamat menjadi sebagai berikut:

          $ cat selamat

          #---------------------------

          # Program selamat versi 3.0 

          # Mencetak ucapan selamat

          #---------------------------

          jam=`date | cut -c12-13`

          case "$jam"

          in

             0? | 1 [01] )  echo "selamat pagi"  # 0 s/d 11

             1[2-7]      )  echo "selamat siang" # 12 s/d 17

             *           )  echo "selamat malam" # 18 s/d 23

          esac

          $

     7.6 PENGULANGAN

     7.6.1 Perintah for

          Perintah  for  digunakan  untuk  mengeksekusi  beberapa 

     perintah secara berulang-ulang. Format dasarnya adalah:

          for var in kata1 kata2 ... katan

          do

               perintah

               perintah

               ...

          done

          Perintah-perintah  yang  terletak antara  do  dan  done  

     disebut tubuh pengulangan (body of loop).  Perintah-perintah 

     tersebut  akan  dieksekusi sebanyak kata yang  di  cantumkan 

     setelah   kata  in  pada  perintah  for.   Ketika   perintah 

     pengulangan dieksekusi, kata kata1 diberikan ke variabel var 

     dan perintah pada tubuh pengulangan dieksekusi. Setelah itu, 

     kata  ke dua pada daftar, yaitu kata2 diberikan ke  variabel 

     var dan perintah pada tubuh pengulangan dieksekusi.   Proses 

     ini   akan  terus  berlangsung  hingga  seluruh  kata   yang 

     tercantum  selesai dimasukkan ke dalam variabel var.  Dengan 

     demikian,  jika  terdapat n kata sesudah kata in  pada  for, 

     maka akan dilakukan pengulangan eksekusi perintah pada tubuh 

     pengulangan sebanyak n kali.

          $ for x in a b c

          > do

          >    echo $i

          > done

          a

          b

          c

          $

          Proses  pengulangan  di atas  dilakukan  sebanyak  tiga 

     kali, karena banyaknya kata pada daftar kata setelah in pada 

     perintah for adalah tiga.

          Pada pengulangan pertama, kata pertama pada daftar kata 

     dimasukkan  ke  variabel  x. Kemudian  perintah  pada  tubuh 

     pengulangan   dieksekusi,  yaitu  menampilkan   nilai   dari 

     variabel  x. Demikian selanjutnya hingga kata terakhir  dari 

     daftar kata tersebut.

          Misalkan kita memiliki 4 buah file yang akan kita cetak 

     ke printer. Maka kita dapat menggunakan perintah for sebagai 

     berikut:

          $ for berkas in prog1 prog2 prog3 

          > do

          >    cat $berkas | lp

          > done

          request id is laser-89 (standard input) 

          request id is laser-90 (standard input) 

          request id is laser-91 (standard input)

          $

          Perintah  ini identik dengan perintah-perintah  sebagai 

     berikut:

          $ cat prog1 | lp 

          request id is laser-89 (standard input) 

          $ cat prog2 | lp

          request id is laser-90 (standard input) 

          $ cat prog3 | lp

          request id is laser-91 (standard input)

          $

          Shell juga mengijinkan penggunaan substitusi nama  file 

     pada  daftar  kata setelah in dari  perintah  for,  sehingga 

     perintah di atas dapat kita ubah menjadi sebagai berikut:

          $ for berkas in prog[1-3]

          > do

          >    cat $berkas | lp

          > done

          request id is laser-89 (standard input) 

          request id is laser-90 (standard input) 

          request id is laser-91 (standard input)

          $

          Jika  isi  current directory kita adalah  hanya  prog1, 

     prog2, prog3  maka perintah di atas dapat dilakukan  sebagai 

     berikut:

          $ for berkas in *

          > do

          >    cat $berkas | lp

          > done

          request id is laser-89 (standard input) 

          request id is laser-90 (standard input) 

          request id is laser-91 (standard input)

          Kita juga dapat menggunakan daftar file yang  tersimpan 

     dalam berkas sebagai berikut:

          $ cat listfile

          prog1

          prog2

          prog3

          $ for berkas in `cat listfile`

          > do

          >    cat $berkas | lp

          > done

          request id is laser-89 (standard input) 

          request id is laser-90 (standard input) 

          request id is laser-91 (standard input)

          $

          Pada  pemanfaatan  parameter posisi, ada  beberapa  hal 

     yang harus diperhatikan. Perhatikan program argufor  dibawah 

     ini:

          $ cat argufor

          #----------------------------------

          # Program argufor versi 1.0

          # Contoh pemakaian argumen pada for

          #----------------------------------

          echo jumlah argumen yang dipassing adalah $#

          for argu in $*

          do

               echo $argu

          done

          $ argufor a b c

          jumlah argumen yang dipassing adalah 3

          a

          b

          c

          $ argufor 'a b' c

          jumlah argumen yang dipassing adalah 2

          a

          b

          c

          $

          Pada  eksekusi  argufor ke dua, terlihat  bahwa  jumlah 

     argumen  yang  dilewatkan atau dipassing adalah  benar  dua. 

     Namun  nilai  yang ditampilkan terlihat ada  tiga.  Hal  ini 

     disebabkan  karena kutip ganda diabaikan pada perintah  for. 

     Sekarang kita gunakan variabel $@ sebagai pengganti $*.

          $ cat argufor

          #----------------------------------

          # Program argufor versi 2.0

          # Contoh pemakaian argumen pada for

          #----------------------------------

          echo jumlah argumen yang dipassing adalah $#

          for argu in "$@"

          do

               echo $argu

          done

          $ argufor 'a b' c

          jumlah argumen yang dipassing adalah 2

          a b

          c

          $ argufor

          jumlah argumen yang dipassing adalah 0

          $

          Perintah  for  dapat dilakukan tanpa daftar  kata  yang 

     mengikut perintah in.

          for var

          do

               perintah

               perintah

               ...

          done

          Perintah for tanpa daftar kata yang mengikuti  perintah 

     in memiliki arti yang identik dengan:

          for var in "$@"

          do

               perintah

               perintah

               ...

          done

          Dengan  demikian,  program argufor di atas  dapat  kita 

     perbaiki sebagai berikut:

          $ cat argufor

          #----------------------------------

          # Program argufor versi 3.0

          # Contoh pemakaian argumen pada for

          #----------------------------------

          echo jumlah argumen yang dipassing adalah $#

          for argu 

          do

               echo $argu

          done

          $ argufor 'a b' c

          jumlah argumen yang dipassing adalah 2

          a b

          c

          $ argufor

          jumlah argumen yang dipassing adalah 0

          $

     7.6.2 Perintah while

          Jenis ke dua dari perintah pengulangan adalah  perintah 

     while. Format umumnya adalah:

          while perintahT

          do

               perintah

               perintah

               ...

          done

          perintahT  akan dieksekusi dan diuji status  keluarnya. 

     Jika status keluarnya adalah nol maka perintah-perintah yang 

     terletak  antara  do  dan  done  akan  dieksekusi.   Setelah 

     eksekusi perintah-perintah tersebut selesai, perintahT  akan 

     diuji  kembali, jika status keluarnya adalah tidak nol  maka 

     proses  pengulangan  dihentikan dan  dilanjutkan  ke  proses 

     selanjutnya.  Jadi  perintah  antara do dan  done  tak  akan 

     dieksekusi jika status keluar perintahT adalah tak nol.

          $ cat cobawhile

          #----------------------------

          # Program cobawhile versi 1.0

          # Contoh program while 1

          #----------------------------

          i=1

          while [ "$i" -lt 6 ] 

          do

               echo $i

               i=`expr $i + 1`

          done

          $ cobawhile

          1

          2

          3

          4

          5

          $

          Variabel  i adalah variabel penghitung yang  sebelumnya 

     telah  diset dengan 1, dimana setiap  dilakukan  pengulangan 

     variabel   penghitung  akan  ditambah  satu   dan   variabel 

     penghitung  tersebut  akan dibandingkan dengan  bilangan  5. 

     Perintah  while  akan melakukan  pengulangan  atas  perintah 

     selama  kondisi  pada  perintahT  benar  atau  mengembalikan 

     status  keluar nol. Jika tidak maka perintah antara  do  dan 

     done akan diabaikan.

          Kita  juga  dapat  menggunakan  perintah  while  dengan 

     dikombinasi   dengan  perintah  shift   untuk   memanfaatkan 

     argumen.

          $ cat shiftwhile

          #----------------------------

          # Program shiftwhile versi 1.0

          # Contoh program while 2

          #----------------------------

          while [ "$#" -ne 0 ] 

          do

               echo $i

               shift

          done

          $ shiftwhile a b c

          a

          b

          c

          $ shiftwhile 'a b' c

          a b

          c

          $ shiftwhile

          $

     7.6.3 Perintah until

          Jenis ke tiga dari perintah pengulangan adalah perintah 

     until. Format umumnya adalah:

          until perintahT

          do

               perintah

               perintah

               ...

          done

          perintah-perintah  yang terletak di antara do dan  done 

     akan  dieksekusi  jika status keluar dari  perintahT  adalah 

     tidak nol. 

          Perintah  until  berguna  terutama  bagi  program  yang 

     sedang  menunggu  suatu keadaan tertentu.  Misalnya  seperti 

     program hadir versi 5.0 yang berfungsi memberitahu kehadiran 

     pemakai  yang  kita cari. Mekanisme  yang  digunakan  adalah 

     bahwa program akan memeriksa ke dalam sistem Unix setiap  60 

     detik  sekali. Jika pemakai yang kita cari  telah  ditemukan 

     maka program hadir akan menampilkan pesan kepada kita.

          $ cat hadir

          #------------------------

          # Program hadir ver 5.0

          # Contoh penggunaan until

          #------------------------

          if [ "$#" -ne 1 ] 

          then

               echo "Cara pakai: hadir namapemakai"

               exit 1

          fi

          pemakai="$1"

          # memeriksa setiap menit atas kehadiran 

          # orang yang kita cari dalam sistem

          until who | grep "^$pemakai" > /dev/null

          do

               sleep 60            # 1 menit

          done

          # dan beritahu jika hadir !

          echo "$pemakai hadir dalam sistem !"

          $

          Perintah  sleep  berfungsi  menunda  eksekusi   program 

     selama  n  detik.  Pada program di  atas,  eksekusi  ditunda 

     selama  60  detik, kemudian setelah itu  dilanjutkan  dengan 

     proses  pemeriksaan pemakai kembali. Jika pemakai  ditemukan 

     maka  perintah  grep akan mengembalikan  status  keluar  nol 

     sehingga kondisi keluar bagi until terpenuhi.

          $ who

          heru       tty05        Oct 23 07:30

          root       tty01        Oct 23 07:28

          denny      tty02        Oct 23 07:28

          ucrit      tty03        Oct 23 07:29

          chaerind   tty04        Oct 23 07:30

          $ hadir ucrit

          ucrit hadir dalam sistem !

          $ hadir irmawati

          -                    (menunggu hingga irmawati hadir)

          Cara pemanggilan perintah tersebut tidak praktis karena 

     terminal  yang  kita gunakan akan menunggu  hingga  irmawati 

     hadir ke dalam sistem. Untuk itu  maka kita dapat  melakukan 

     perintah tersebut secara proses latar belakang. Jika pemakai 

     yang   dicari  diketemukan  maka  pesannya   akan   otomatis 

     ditampilkan  ke  layar  walaupun  kita  sedang   mengerjakan 

     perintah lain.

          $ who

          heru       tty05        Oct 23 07:30

          root       tty01        Oct 23 07:28

          denny      tty02        Oct 23 07:28

          ucrit      tty03        Oct 23 07:29

          chaerind   tty04        Oct 23 07:30

          $ hadir irmawati &            (proses latar belakang)

          4241                          (id proses)

          $ vi program                  (melakukan perintah lain)

               ...

          irmawati hadir dalam sistem ! (otomatis ditampilkan!)

          Cara  ini tentunya akan merusak satu baris layar  kita. 

     Untuk  itu maka program hadir tersebut disempurnakan  dengan 

     mengirim pesan kehadirannya melalui mail sebagai berikut:

          $ cat hadir

          #------------------------

          # Program hadir ver 6.0

          # Contoh penggunaan until

          #------------------------

          if  [ "$1" = -m ]

          then 

               mailpil=TRUE

               shift

          else

               mailpil=FALSE

          fi

          if [ "$#" -eq 0 -o "$#" -gt 1 ] 

          then

               echo "Cara pakai: hadir [-m] namapemakai"

               echo "       -m = pesan dikirim via mail"

               exit 1

          fi

          pemakai="$1"

          # memeriksa setiap menit atas kehadiran 

          # orang yang kita cari dalam sistem

          until who | grep "^$pemakai" > /dev/null

          do

               sleep 60

          done

          if [ "$mailpil" = FALSE ] 

          then

               echo "$pemakai hadir dalam sistem !"

          else

               aku=`who am i | cut -c1-8`

               echo "$pemakai hadir dalam sistem !" | mail $aku

          fi

          $

          Kini hasil pemeriksaan dapat diterima langsung di layar 

     atau melalui surat elektronik (mail) dengan memberi  pilihan 

     -m ketika memanggil program hadir

          $ who

          heru       tty05        Oct 23 07:30

          root       tty01        Oct 23 07:28

          denny      tty02        Oct 23 07:28

          ucrit      tty03        Oct 23 07:29

          chaerind   tty04        Oct 23 07:30

          $ hadir irmawati -m

          Cara pakai: hadir [-m] namapemakai

                 -m = pesan dikirim via mail

          $ hadir irmawati &         (proses latar belakang)

          4250                       (id proses)

          $ vi program               (melakukan perintah lain)

               .

               .

               .

          you have mail

          $ mail

          from denny Fri Oct 23 07:28:32 PDT 1992

          irmawati hadir dalam sistem ! 

          ?d

          $

     7.6.4 Perintah yang Berkaitan dengan Pengulangan

     7.6.4.1 Keluar dari Pengulangan

          Terkadang kita tidak menginginkan melanjutkan perintah-

     perintah   dalam  suatu  pengulangan.  Untuk   keluar   dari 

     pengulangan (tidak dari program) dapat kita gunakan perintah 

     break.   Perintah  break  sering  digunakan  terutama   pada 

     pengulangan tak berakhir (loop forever). Contoh  pengulangan 

     tak berakhir adalah sebagai berikut:

          while true

          do

               ...

          done

          atau menggunakan until sebagai berikut:

          until false

          do

               ...

          done

          Pemakaian  break pada pengulangan tak  berakhir  adalah 

     sebagai berikut:

          while true

          do

               read pilihan

               if [ $pilihan = quit ]

               then

                    break

               else

                    echo $pilihan

               fi

          done

          Pengulangan pada program breaker adalah pengulangan tak 

     berakhir. Program breaker ini akan memanggil program  getcmd 

     yang  akan  mengambil masukan dari  terminal.  Masukan  dari 

     terminal  ini  akan  dievaluasi dan  jika  masukan  tersebut 

     adalah kata quit maka proses pengulangan ini diakhiri.

          break   dapat   diletakkan   pada   pengulangan   dalam 

     pengulangan  (nested loop). Untuk itu break juga  memberikan 

     fasilitas   untuk   meninggalkan   pengulangan    bertingkat 

     tersebut.

          break n

          dimana  n menunjukkan banyaknya pengulangan yang  harus 

     ditinggalkannya. Perhatikan contoh berikut dimana break akan 

     memaksa kita untuk meninggalkan 2 tingkat pengulangan:

          for file

          do

               ...

               while true

               do

                    ...

                    if [ -n "$error" ]

                    then

                         break 2

                    fi

                    ...

               done

               ...

          done

          Jika  diinginkan keluar sesungguhnya dari program  maka 

     dapat kita gunakan perintah exit sebagai berikut:

          exit n

          dimana n adalah status keluar dari program tersebut.

     7.6.4.2 Mengabaikan Sisa Perintah dalam Pengulangan

          Perintah  continue akan mengabaikan sisa perintah  yang 

     belum  dieksekusi dalam pengulangan tapi tidak  keluar  dari 

     pengulangan  melainkan  melanjutkan  ke  proses  pemeriksaan 

     kondisi dari pengulangannya. 

          for file

          do

               if [ ! -f "$file" ]

               then

                    echo "$file tak ada !"

                    continue

               fi

               # proses terhadap file

               ...

          done

          Setelah  continue dieksekusi maka  perintah  dibawahnya 

     tetapi masih di dalam pengulangan, tidak akan dieksekusi. 

     7.7 LINGKUNGAN PEMAKAI

     Di dalam lingkungan shell terdapat sejumlah variabel standar 

     yang  dapat  kita  manfaatkan untuk  memudahkan  kita  dalam 

     pemrograman shell.

     7.7.1 PS1 dan PS2

          Karakter  prompt  dari sistem UNIX  disimpan  di  dalam 

     variabel lingkungan yang dinamakan PS1. Kita dapat  mengubah 

     variabel ini menjadi sesuai yang kita inginkan.

          $ echo :$PS1:                      (ubah prompt shell)

          "$ :

          $ PS1="unix> "                     (ubah prompt shell)

          unix> pwd

          /usr/denny

          unix> PS1="$ "                     (kembali normal)

          $

          Untuk  mengubah prompt shell kedua,  dimana  defaultnya 

     adalah >, dapat kita gunakan variabel PS2.

          $ echo :$PS2:

          :> :

          $ PS2="ext> "

          $ for x in 1 2 

          ext> do

          ext>      echo $x

          ext> done

          1

          2

          $

          Seperti  juga  variabel  shell  lainnya,  setelah  kita 

     keluar dari sistem maka nilai yang tersimpan akan hilang dan 

     kembali ke nilai default.

     7.7.2 HOME

          Direktori tinggal atau home direktory adalah  direktori 

     dimana  kita  akan  ditempat setelah  kita  masuk  ke  dalam 

     sistem.  Direktori ini merupakan direktori dimana kita  bisa 

     bekerja. Variabel lingkungan yang menyimpan mengenai  lokasi 

     direktori tinggal kita adalah variabel HOME.

          $ echo $HOME

          /usr/denny

          $

          Variabel  ini dapat digunakan dalam  pemrograman  untuk 

     mengetahui lokasi direktori tinggal kita. Variabel ini  juga 

     dimanfaatkan oleh perintah cd jika perintah ini tak  diikuti 

     oleh argumen.

          $ pwd 

          /tmp/gatotkaca

          $ cd

          $ pwd

          /usr/denny                    (direktori tinggal saya)

          $

          Variabel ini dapat diubah sesuai dengan kehendak  kita, 

     namun harap berhati-hati karena beberapa perintah pada  Unix 

     mengacu   direktori  tinggal  pemakai  dengan   memanfaatkan 

     variabel HOME (misalnya perintah cd).

          $ cd

          $ pwd 

          /usr/denny

          $ HOME=/usr/denny/coba

          $ cd

          $ pwd 

          /usr/denny/coba

          $

     7.7.3 PATH

          Variabel   PATH  digunakan  untuk   menentukan   lokasi 

     pencarian dari suatu file yang akan kita eksekusi. 

          $ echo $PATH

          /bin:/usr/bin::

          $

          Artinya  bahwa shell akan mengeksekusi  program  dengan 

     pencarian  sebelumnya pada direktori seperti yang  tercantum 

     di  atas,  yaitu   /bin,  /usr/bin  dan  current  directory. 

     Pencarian  oleh  shell pada direktori yang  tercantum  dalam 

     variabel  PATH    dilakukan  secara  terurut.  Pemisah  satu 

     direktori  dengan direktori lainnya adalah titik  dua.  Jika 

     terdapat   ::  diartikan  sebagai  current  directory   Atau 

     beberapa  UNIX  lebih suka menggunakan  karakter  ".'  untuk 

     menyatakan pencarian di current directory.

          $ echo $PATH

          /bin:/usr/bin:.

          $

          Jika  direktori  dari program yang kita  panggil  belum 

     terdaftar dalam variabel PATH, kita harus memanggil  program 

     tersebut secara lengkap, misalnya:

          $ pwd 

          /tmp 

          $ echo $PATH

          /bin:/usr/bin::

          $ /usr/denny/program/jpemakai      (harus lengkap !)

                6

          $

          $ jpemakai                    (tanpa direktori lengkap)

          jpemakai: not found           (tidak dikenal ?)

          $

          Shell  tidak  berhasil  menemukan  program  yang   akan 

     dieksekusi.   Sekarang   marilah   kita   pasang   direktori 

     /usr/denny/program  ke  dalam variabel PATH  dan  perhatikan 

     pengaruhnya.

          $ PATH=$PATH:/usr/denny/program         (update PATH)

          $ echo $PATH

          /bin:/usr/bin::/usr/denny/program

          $ pwd

          /tmp

          $ jpemakai                    (tanpa direktori lengkap)

                6                       (berhasil...)

          $

          Dengan   alasan  keamanan,  sebaiknya  pencarian   pada 

     current direktori diletakkan setelah direktori sistem.

          PATH=/bin:/usr/bin::/usr/denny/bin

          atau

          PATH=/bin:/usr/bin:/usr/denny/bin::

          Di  dalam pemrograman sebaiknya juga dicantumkan  letak 

     jalur pencarian yang akan digunakan oleh seluruh perintah di 

     dalam program. Hal ini dengan tiga alasan:

          o Sebagai standar direktori program yang kita gunakan. 

          o Fleksibel dan konsisten dalam penggunaan jalur.

          o Menghindari  penggunaan jalur yang  tidak  semestinya 

            sehingga  memungkinkan  pengeksekusian  program  yang 

            tidak   semestinya,   yaitu   namanya   sama   tetapi 

            direktorinya berbeda.

     7.7.4 IFS

          IFS  adalah  singkatan dari Internal  Field  Separator. 

     Shell  akan  menggunakan nilai ini  pada  melakukan  parsing 

     masukan dari perintah read, keluar dari substitusi  perintah 

     (mekanisme  kutip terbalik) dan ketika melakukan  substitusi 

     variabel.  Nilai  standar  dari  variabel  IFS  ini   adalah 

     karakter spasi atau tab.

          $ echo "$IFS"

          $

          Kita  dapat pula mengubah nilai dari variabel IFS.  Hal 

     ini berguna  untuk mengubah delimiter masukan non spasi atau 

     tab. Perhatikan contoh berikut:

          $ IFS=:

          $ read x y z

          123:456:789

          $ echo $x

          123

          $ echo $z

          789

          $ list="satu:dua:tiga"

          $ for x in $list

          > do

          >     echo $x

          > done

          satu 

          dua 

          tiga

          $ say=aku cinta Unix

          $ echo $say     

          aku cinta Unix

          $

     7.7.5 File .profile 

          Ketika  kita  masuk ke dalam sistem  Unix  dan  sebelum 

     prompt  Unix ditampilkan, shell login mengeksekusi dua  file 

     khusus.  Pertama  adalah /etc/profile,  yaitu  program  yang 

     diset  up  oleh administrastor sistem  dan  biasanya  berisi 

     pemeriksaan  seperti  pemeriksaan mail yang  masuk,  set  up 

     default  umask,  nilai standar bagi variabel  tertentu  atau 

     program tertentu lainnya yang dipasang administrator  sistem 

     untuk memonitor pemakai.

          File  ke  dua adalah file .profile di  dalam  direktori 

     tinggal. Berikut ini contoh file .profile.

          $ cat $HOME/.profile

          #------------------------------

          # Program .profile

          # Contoh isi .profile sederhana

          #------------------------------

          PATH="/bin:/usr/bin::"

          export PATH

          selamat           (program ucapan pada bab lalu !) 

          $

          Kita   dapat   pula  mengubah   isi   .profile   dengan 

     menambahkan  variabel  lain atau  program  lainnya  sehingga 

     begitu  anda  masuk ke dalam sistem maka program  yang  anda 

     inginkan otomatis aktif. Cara kerja ini seperti autoexec.bat 

     pada sistem operasi DOS.

          Jika   kita   menginginkan   perubahan,   maka    untuk 

     mengaktifkan  /etc/profile dan .profile  adalah  dengan  dua 

     cara,  pertama  dengan proses login dan ke dua  dengan  cara 

     menggunakan perintah bertitik:

          $ . /etc/profile

          $ . .profile

          $

          Dengan  demikian  perubahan  yang  telah  terjadi  akan 

     segera dirasakan oleh kita.

     7.7.6 TERM

          Variabel  TERM  adalah variabel  yang  digunakan  untuk 

     menentukan jenis terminal yang digunakan.

          Jika kita memiliki lebih dari satu jenis terminal, maka 

     kita dapat melakukan pemilihan jenis terminal yang akan kita 

     gunakan dengan membuat program terminal dibawah ini. Program 

     ini dapat pula kita letakkan di dalam file .profile sehingga 

     kita dapat langsung mengubah jenis terminal yang sesuai jika 

     kita masuk ke dalam lingkungan baru . 

          $ cat terminal

          #----------------------------

          # Program terminal versi 1.0

          # Pemilih terminal

          #----------------------------

          echo "Terminal yang akan digunakan [default vt100] : "

          read TERM

          if [ -z "$TERM" ]

          then

               TERM=vt100

          fi

          export TERM

          $ 

          Cara  menggunakan  program terminal  tidak  dalam  file 

     .profile adalah sebagai berikut:

          $ terminal

          Terminal yang akan digunakan [default vt100] : ansi

          $ echo $TERM

          ansi

          $

     7.8 PEMROGRAM LANJUTAN

     7.8.1 Perintah eval

          Perintah  eval akan memaksa shell memeriksa  argumennya 

     dua  kali  setelah  itu  dilanjutkan  dengan  pengeksekusian 

     terhadap argumen tersebut. Argumen dari perintah eval adalah 

     perintah baris dalam UNIX.

          eval perintah-baris

          Untuk  lebih  jelasnya marilah kita  perhatikan  contoh 

     berikut ini:

          $ pipa="|"

          $ ls $pipa wc -l

          | not found

          wc not found

          -l not found

          $

          Kesalahan   di  atas  disebabkan  karena  shell   tidak 

     mengenal  karakter khusus pemipaan '|' yang tersimpan  dalam 

     variabel pipa. Sehingga perintah ls mengartikan argumen yang 

     diberikan  ada tiga yaitu '|', wc dan -l.  Argumen  tersebut 

     dianggap file atau direktori yang akan dicari. Karakter  '|' 

     tidak  diartikan  sebagai karakter  khusus  pemipaan  shell. 

     Untuk mengatasi hal ini dapat kita gunakan perintah eval.

          $ pipa="|"

          $ ls $pipa wc -l

          $ eval ls $pipa wc -l

               10

          $

          Pemeriksaan pertama, shell akan mensubstitusi  karakter 

     '|'  sebagai  nilai  dari  variabel  pipa  dan  shell  belum 

     mengenal   karakter   khusus   pemipaan   shell    tersebut. 

     Pemeriksaan  ke  dua, shell mengenal  karakter  '|'  sebagai 

     karakter khusus pemipaan shell. 

          Perintah  eval  sering  pula  digunakan  untuk  membuat 

     semacam  pointer ke variabel. Perhatikan  contoh  penggunaan 

     perintah eval berikut:

          $ x=sapi

          $ pointerx=x

          $ eval echo \$$pointerx     (nilai dari nilai pointerx)

          sapi

          $ eval $pointerx=kuda    

          $ echo $x

          kuda

          $

     7.8.2 Perintah trap

          Jika  kita mengetik tombol DELETE pada terminal  selama 

     mengeksekusi  program  maka program  akan  segera  berhenti. 

     Untuk itu maka diperlukan suatu mekanisme yang mampu melacak 

     dan melakukan aksi bagi program terhadap adanya aksi ini.

          Pada  saat  tombol  DELETE  ditekan,  terdapat   sinyal 

     interrupt  yang dikirim ke proses yang sedang berjalan  pada 

     terminal tersebut. Kejadian tersebut berlaku pula jika  kita 

     login  melalui  modem  dan  memutuskan  hubungan  (hang-up).  

     Sinyal  ini  yang  melakukan  secara  paksa  supaya  program 

     berhenti.  Terdapat  berbagai jenis sinyal  dalam  UNIX  dan 

     masing-masing memiliki kegunaan tersendiri. Misalnya  dengan 

     menjalankan  proses latar belakang &, shell melindungi  dari 

     sinyal interrupt tapi tidak terhadap sinyal hang-up.

          Dalam  shell  terdapat  perintah  trap  yang   mengatur 

     bagaimana  menjalankan perintah sesudah  mendeteksi  sinyal. 

     Secara umum format dari perintah trap adalah:

          trap perintah sinyal

          perintah adalah satu atau lebih perintah dalam karakter 

     kutip yang akan dieksekusi ketika sinyal yang  didefinisikan 

     terdeteksi.  Sinyal adalah angka yang didefinisikan  sebagai 

     nomor sinyal shell. Nomor sinyal shell yang biasa  digunakan 

     adalah seperti pada tabel 7.8.

          Perintah   trap   sering  digunakan   untuk   melakukan 

     penghapusan  secara  otomatis terhadap file  sementara  yang 

     digunakan  di dalam pemrograman jika terdapat  kondisi  yang 

     tak diinginkan yang telah didefinisikan pada perintah  trap. 

     Sebagai contoh perhatikan perintah berikut di bawah ini:

          trap "rm tmp/work1 tmp/work2; exit" 0 1 2

          Program shell yang memiliki perintah trap di atas  akan  

     menghapus  file  /tmp/work1 dan /tmp/work2  secara  otomatis 

     jika program keluar dari shell sempurna (sinyal 0) atau jika 

     terjadi  hang  up (sinyal 1) atau  adanya  penekanan  tombol 

     DELETE. 

          -------------------------------------------------------

          sinyal    Arti

          -------------------------------------------------------

          0         keluar dari shell

          1         hangup

          2         interrupt (tombol DELETE)

          3         terminasi program

          4         perintah illegal

          5         trace trap

          6         perintah I/O trap

          7         perintah emulator trap

          8         perkecualian floating point

          9         Kill (tak dapat diacuhkan)

          10        bus error

          11        pelanggaran segmentasi

          12        bad argumen to a system call

          13        tulis ke pipa tanpa sebuah proses membacanya

          14        Alarm timeout

          15        Terminasi, sinyal yang dikirim kill 

          -------------------------------------------------------

                          Tabel 7.8 Sinyal interupsi

          Selain  itu  trap  dapat  digunakan  untuk   melindungi 

     program supaya tidak keluar (exit) pada saat menerima sinyal 

     tertentu, misalnya sinyal interrupt.

          trap "" 2

          Karakter  ""  pada trap berarti proses  tersebut  tidak 

     akan melakukan sesuatu bila menerima sinyal interrupt. 

     7.8.3 Fungsi

          Pada   shell,   kita  dapat   membuat   suatu   fungsi. 

     Mendefinisikan suatu fungsi dapat dilakukan dengan cara:

          nama () { perintah; ... ;perintah; }

          dimana nama adalah nama dari fungsi yang didefinisikan, 

     karakter  kurung () akan memberitahukan kepada  shell  bahwa 

     sebuah  fungsi telah didefinikan dan perintah yang  terdapat 

     diantara  karakter  kurung kurawal {} adalah  tubuh  fungsi. 

     Perintah-perintah  pada  tubuh  fungsi  tersebut  yang  akan 

     didefinisikan apabila fungsi tersebut dieksekusi.  Perhatian 

     bahwa harus terdapat ruang pada sebelum dan sesudah karakter 

     kurung  kurawal serta  pada perintah terakhir harus  diikuti 

     karakter titik koma.

          Berikut  contoh sebuah fungsi sederhana yang  digunakan 

     untuk  menampilkan  jumlah pemakai yang  sedang  menggunakan 

     sistem sekarang. 

          $ nu () { who | wc -l; }

          $ nu

                15

          $

          Argumen  yang  tercantum  setelah  nama  fungsi  ketika 

     dilakukan pemanggilan fungsi, secara otomatis akan diberikan 

     ke  parameter  posisi  $1,  $2,  ...  seperti  halnya   pada 

     pemrograman biasa. Berikut ini contohnya:

          $ cetak () { cat $1 | pr | lp; }

          $ cetak file1                 cetak file1)

          $

          Keberadaan  fungsi hanya pada current shell  dan  tidak 

     dilewatkan   ke   subshell.   Selanjutnya,   karena   fungsi 

     dieksekusi  dalam  current shell, maka  perubahan  direktori 

     atau  perubahan  variabel akan juga  diterima  oleh  current 

     shell tersebut.

          $ pwd

          /usr/denny

          $ db () {

          >         PATH=$PATH:/usr/denny/bin

          >         PS1=DB:

          >         cd /usr/denny/bin;

          >       }

          $ db

          DB: pwd

          /usr/denny/bin

          DB:

          Kita  dapat pula menggabungkan fungsi-fungsi yang  kita 

     miliki dalam sebuah file.  

          Untuk  mengeksekusi ke shell current yang  sedang  kita 

     gunakan dapat dilakukan cara sebagai berikut:

          . namafilefungsi

          Sekali  sebuah fungsi telah dieksekusi,  maka  eksekusi 

     terhadap  fungsi  selanjutnya  akan  lebih  cepat  dibanding 

     dengan  eksekusi terhadap program shell. Hal ini  disebabkan 

     shell  tidak perlu lagi melakukan proses  pencarian  program 

     pada disk, membuka file dan memuat ke memori.

          $ cat filefung

          #--------------------------------------------

          # Nama fungsi mycd versi 1.0

          #    mycd dir  pindah ke direktori dir

          #    mycd -    pindah ke direktori sebelumnya

          #--------------------------------------------

          mycd ()

          {

               DIRBARU=`pwd`

               if [ "$1" = "-" ]

               then

                    echo $DIRLAMA

                    cd $DIRLAMA

               else

                    cd "$1"

               fi

               DIRLAMA=$DIRBARU;

          }

          $ . filefung

          $ pwd

          /usr/denny

          $ mycd /usr/spool/uucppublic

          $ pwd

          /usr/spool/uucppublic

          $ mycd -

          /usr/denny

          $ mycd -

          /usr/spool/uucppublic

          $

          Sekali fungsi didefinisikan pada shell, maka  selamanya 

     fungsi  akan  terus  menetap pada  memori.  Untuk  menghapus 

     keberadaan  fungsi  pada shell tersebut dapat  kita  gunakan 

     perintah unset.

          $ nu () { who | wc -l; }

          $ nu

                15

          $ nu

                15

          $ unset nu

          $ nu

          nu: not found

          $

          Jika  kita  mengeksekusi  perintah  exit  dalam  sebuah 

     fungsi, maka akibatnya tidak hanya keluar dari fungsi tetapi 

     juga  keluar dari program shell yang memanggil fungsi.  Jika 

     kita  hanya ingin menghentikan eksekusi fungsi,  kita  dapat 

     lakukan:

          return n

          Nilai n digunakan sebagai status kembali fungsi. Status 

     kembali  fungsi identik dengan status keluar. Jika  perintah 

     return  tidak dinyatakan, maka status kembali dari  perintah 

     terakhir yang dieksekusilah yang akan dikembalikan. 

          Berikut ini contoh penggunaan return n dan  pemanfaatan 

     fungsi di dalam program shell.

          $ cat demo

          #----------------------------------------------------

          # Program demo versi 1.0

          # Contoh fungsi dalam program dan pemanfaatan return

          #----------------------------------------------------

          # Tubuh fungsi bernama confirm

          confirm () {

               echo "Konfirmasi $1 ([N] atau Y)? \c"

               read response junk

               case "$response"

                    in 

                    [Yy]*)    return 0;;     

                    [Nn]*)    return 1;;

                        *)    return 1;;

               esac

          }

          # Tubuh program shell 

          for f in $*

          do

               if confirm "Hapus $f"

               then

                    echo "Hapus $f"

                    rm $f

               else

                    echo "Tidak dihapus $f"

               fi

               shift

          done

          $

     7.8.4 Pelacakan Kesalahan Program

          Sebagai  bahasa pemrograman, shell  memiliki  fasilitas 

     pelacakan  kesalahan program. Walaupun sederhana,  fasilitas 

     ini  cukup  ampuh  dalam  melacak  kesalahan  program   yang 

     terjadi. Cara yang digunakan adalah sebagai berikut:

          sh -x perintah [argumen]

          atau dengan mencantumkan ke dalam program :

          set -x

          Pada  pelacakan ini, perintah-perintah yang  dieksekusi 

     akan  dicetak  ke terminal setelah nama file,  variabel  dan 

     substitusi perintah dan pengalihan arah masukan dan keluaran 

     dilakukan. Pencetakkan perintah yang dieksekusi ke  terminal 

     sebelumnya didahului oleh karakter plus.

          $ x=*

          $ set -x

          echo $x

          + echo file1 file2 file3

          file1 file2 file3

          $ perintah=wc

          perintah=wc

          $ ls | $perintah -l

          + ls

          + wc -l

                5

          $

          Penghentian  proses pelacakan program  dapat  dilakukan 

     dengan memanggil perintah set dengan pilihan +x.

          $ set +x

          + set +x

          $ ls | wc -l

                5

          $

          Berikut   ini  diberikan  contoh  program  dan   proses 

     pelacakannya.

          $ cat ratarata

          set -x

          num=`wc -l < $1`

          tot=0

          count=$num

          while test $count -gt 0

          do 

               score=`sed -n ${count}p $1 | tr -dc '[0-9]'`

               tot=`expr $tot + $score`

               count=`expr $count - 1`

          done

          avint=`expr $tot / $num`

          avdec=`expr $tot % $num \* 100`

          echo Rata rata skore adalah $avint.$avdec

          set +x

          $ ratarata file

          + wc -l

          num=      10

          tot=0

          count=    10

          + test 10 -gt 0

          + tr -dc [0-9]

          + sed -n 10p file

          score=2

          + expr 10 -1

          count=9

          + test 9 -gt 0

               ...

          <dan seterusnya berputar dalam pengulangan>

               ...

          + test 1 -gt 0

          + tr -dc [0-9]

          + sed -n 1p file

          score=18

          + expr 71 + 18

          tot=89

          + expr 1 - 1

          count=0

          + test 0 -gt 0

          + expr 89 / 10

          avint=8

          + expr 89 % 10 * 100

          avdec=900

          + echo Rata rata skore adalah 8.900

          $

BAB 8

KOMUNIKASI ANTAR PEMAKAI

          UNIX memiliki fasilitas untuk komunikasi antar pemakai, 

     baik secara langsung maupun tak langsung. Komunikasi pemakai 

     secara  langsung  dapat dilakukan bila pemakai  yang  dituju 

     sedang  aktif di dalam sistem. Sedangkan komunikasi  pemakai 

     secara  tidak langsung dapat dilakukan baik  pemakai  sedang 

     aktif maupun tidak aktif di dalam sistem.

          Banyak  fasilitas komunikasi antar pemakai  yang  dapat 

     digunakan  di  dalam sistem UNIX, namun pada bab  ini  hanya 

     akan dibahas mengenai:

          - komunikasi antar pemakai secara langsung dengan write

          - komunikasi antar pemakai secara tidak langsung dengan 

            mail 

     8.1 KOMUNIKASI ANTAR PEMAKAI SECARA LANGSUNG

          Sistem   UNIX   dapat   membolehkan   pemakai    saling 

     mengirimkan  pesan  elektronik. Pesan dapat  dikirim  secara 

     langsung ke terminal pemakai lain yang sedang aktif di dalam 

     sistem.  Kedua pemakai tersebut kemudian  dapat  melanjutkan 

     percakapan melalui keyboard masing-masing. Fasilitas seperti 

     ini dapat dilakukan dengan menggunakan perintah write.

          Untuk  mengirim  pesan ke pemakai lain  adalah  sebagai 

     berikut:

          $ write ita

          Teng pukul 12.00 wib

          Waktunya makan siang !

          ^D

          $

          Perintah write diikuti oleh nama pemakai lain yang akan 

     dikirimi  pesan,  misalnya ita. Setelah  mengetikkan  ENTER, 

     kita  dapat  langsung  mengetikkan  pesan-pesan  yang   akan 

     dikirim.  Semua  pesan yang kita  ketika  otomatis  langsung 

     ditampilkan di layar pemakai yang dituju. Ketikkan ^D  untuk 

     mengakhiri pesan yang kita kirim.

          Sementara  itu  pada penerima  akan  ditampilkan  pesan 

     sebagai berikut:

          Message from denny tty02 [Wed Jun 11 12:00:00] ..

          Teng pukul 12.00 wib

          Waktunya makan siang !

          EOF

          EOF  menunjukkan pesan yang dikirim sudah  selesai  dan 

     denny  telah  keluar dari perintah write.  Pada  contoh  ini 

     terlihat  pesan dikirim satu arah, yaitu dari denny  ke  ita 

     saja. Sesungguhnya kita dapat melakukan percakapan dua arah, 

     seperti halnya percakapan sehari-hari.

          $  write ita

          Selamat siang, ita            (tunggu jawaban ita)   

          denny  tidak segera mengakhiri pesan dengan ^D,  tetapi 

     menunggu  hingga ada jawaban dari ita. Pada layar  ita  akan 

     tampil pesan berikut:

          Message from denny tty02 [Wed Jun 11 12:00:00] ..

          Jika ita ingin menjawab, ketikkan:

          $ Message from denny tty02 [Wed Jun 11 12:00:00] ..

          Selamat siang, ita

          write denny                     (ini perintah write) 

          Selamat siang juga, denny       (ini pesan buat denny)

          Ada apa yach ?                

          ita  tidak  mengetikkan ^D sebagai tanda  akhir  pesan, 

     sehingga  sekarang  kedua  pemakai  tersebut  dapat  memulai 

     percakapan.  Percakapan akan diakhiri jika salah satu  telah 

     mengakhiri  pesan  dengan ^D. 

          Pada akhir percakapan, layar denny akan tampak  sebagai 

     berikut:

          $ write ita

          Selamat siang, ita 

          message from ita tty04 [Wed Jun 11 12:00:10] ...

          Selamat siang juga, denny

          Ada apa yach ?

          Yuk kita makan siang !

          Maaf, aku tak bisa

          Sebab harus menyelesaikan tugas dari Bos

          Baiklah, selamat tinggal

          Selamat tinggal

          ^D

          $ 

          Pada layar ita akan tampak sebagai berikut:

          $ message from denny tty02 [Wed Jun 11 12:00:00] ...

          Selamat siang, ita 

          write denny

          Selamat siang juga, denny

          Ada apa yach ?

          Yuk kita makan siang !

          Maaf, aku tak bisa

          Sebab harus menyelesaikan tugas dari Bos

          Baiklah, selamat tinggal

          Selamat tinggal

          EOF

          ^D

          $ 

          Jika  kita  mencoba  menghubungi  pemakai  yang   tidak 

     terdaftar pada rekening sistem, maka akan menampilkan pesan:

          $ write jampang

          jampang is not logged on

          $

          dan   perintah  write  berakhir.  Jika   kita   mencoba 

     menghubungi pemakai yang saat itu sedang tidak aktif: 

          $ write heru

          heru is not logged on

          $

          kita akan mendapat pesan yang sama, karena sesungguhnya 

     perintah  write  tidak  memeriksa  apakah  pemakai  tersebut 

     terdaftar  sebagai pemakai sistem (memiliki  rekening)  atau 

     tidak.  Perintah write hanya memeriksa apakah  pemakai  yang 

     dimaksud  sedang  aktif atau tidak. Untuk  memeriksa  apakah 

     pemakai  yang  akan kita hubungi sedang  aktif  atau  tidak, 

     dapat kita lakukan dengan perintah who.

          $ who

          root       tty01        Oct 23 07:28

          denny      tty02        Oct 23 07:28

          ucrit      tty03        Oct 23 07:29

          ita        tty04        Oct 23 07:30

          $

          Pemberian  karakter  '!'  pada awal  baris  pada  baris 

     komunikasi   dari   pesan  melalui  perintah   write,   akan 

     menyebabkan  baris tersebut diterjemahkan  sebagai  perintah 

     UNIX.  Namun  demikian, keluaran dari perintah  sistem  yang 

     dilakukan tidak dikirim ke pemakai yang sedang kita hubungi, 

     sehingga kita harus mengetikkan ulang.

          $ write ita

          File yang kamu cari ada pada direktori:

          !pwd

          /usr/local/bin/tmp/graphic/barrier

          !

          /usr/local/bin/tmp/graphic/barrier

          ^D

          $

          Terkadang  kita  ingin  bekerja  tanpa  diganggu   oleh 

     pemanggilan  pesan. Untuk itu kita dapat menolak pesan  yang 

     masuk dengan menggunakan perintah mesg sebagai berikut:

          $ mesg n

          $

          Parameter 'n' menyatakan 'no' atau tidak, yang  berarti 

     pesan  tidak dapat menginterupsi kerja kita.  Jika  sesorang 

     mengirim pesan kepada kita maka mereka akan mendapat pesan:

          $ write denny

          Permission denied

          $

          Selanjut untuk mengembalikan ke kondisi dimana  pemakai 

     lain dapat mengirim pesan, ketiklah:

          $ mesg y

          $

          Parameter  'y' menyatakan 'yes' atau ya,  yang  berarti 

     pesan dapat diterima kembali.

          Jika   perintah  mesg  diketikkan   tanpa   menyertakan 

     parameter, maka akan ditampilkan kondisi penerimaan pesan:

          $ mesg

          is Y

          $

     8.2 KOMUNIKASI ANTAR PEMAKAI SECARA TIDAK LANGSUNG

          Sistem  UNIX  dapat  membolehkan  pemakai   mengirimkan 

     pesan. Berbeda dengan perintah write, pesan dapat dikirim ke 

     terminal  pemakai  walaupun pemakai  tersebut  sedang  tidak 

     aktif  di  dalam  sistem. Pada umumnya  pesan  yang  dikirim 

     berupa  memo atau surat, bahkan listing  program.  Fasilitas 

     yang berfungsi seperti ini adalah electronic mail.

          Ada  dua  buah electronic mail yang banyak  dipakai  di 

     dalam  sistem UNIX untuk membaca dan mengirim  pesan,  yaitu 

     mail dan mailx.

          Perintah mailx memiliki kemampuan lebih baik  dibanding 

     dengan  perintah mail, namun sayangnya perintah mailx  lebih 

     komplek  dan  lebih sulit digunakan. Pada sub bab ini  hanya 

     diterangkan  penggunaan  mail, karena mail  merupakan  dasar 

     bagi mailx. Program mail yang kini beredar banyak  mengalami 

     modifikasi, namun dasar-dasarnya masih tetap dipertahankan.

          mail   adalah  fasilitas  UNIX  dimana  pemakai   dapat 

     mengirim  pesan   ke  pemakai lain  di  dalam  sistem.  Jika 

     pemakai yang kita kirim pesan sedang aktif, pemakai tersebut 

     akan diberitahu mengenai kedatangan surat kita. Jika pemakai 

     yang  kita  kirim saat itu sedang tidak aktif,  maka  ketika 

     pemakai  tersebut  masuk  ke  dalam  sistem,  otomatis  akan 

     diberitahu bahwa ada surat untuknya.

          you have mail

          Untuk mengirim pesan ke pemakai digunakan cara berikut:

          $ mail ibrahim

          selanjutnya  diikuti pesan-pesan yang akan  dikirim  ke 

     pemakai  lain dan diakhiri dengan ^D atau karakter '.'.

          $ mail ibrahim

          Akan ada pertemuan staff pada

          Tanggal   : 20 Januari 1993

          Pukul     : 14.00 wib

          Tempat    : Ruang A

          Acara     : Rapat Kordinasi

          Harap datang tepat waktu

                         --Direktur--

          ^D

          $

          Kita  dapat  mengirim  ke  beberapa  pemakai  sekaligus 

     seperti ini.

          $ mail ibrahim haydin ivan edwin

          Akan ada pertemuan staff pada

          Tanggal   : 20 Januari 1993

          Pukul     : 14.00 wib

          Tempat    : Ruang A

          Acara     : Rapat Kordinasi

          Harap datang tepat waktu

                         --Direktur--

          .

          $

          Perintah mail tidak memeriksa apakah pemakai yang  kita 

     kirim  adalah  pemakai yang tercatat di  dalam  sistem  atau 

     tidak.  Jika kita mengirim pemakai yang tidak  dikenal  oleh 

     sistem maka kita akan mendapat pesan berikut:

          $ mail ibroahim                    (seharusnya ibrahim)

          Akan ada pertemuan staff pada

          Tanggal   : 20 Januari 1993

          Pukul     : 14.00 wib

          Tempat    : Ruang A

          Acara     : Rapat Kordinasi

          Harap datang tepat waktu

                         --Direktur--

          ^D

          mail: can't send to ibroahim

          Mail saved in dead.letter

          $

          Pesan yang dikirim ke pemakai tak dikenal akan disimpan 

     di dalam file dead.letter  pada current directory.  Sehingga 

     jika  kita ingin mengirim ulang pesan tadi ke  pemakai  yang 

     dikenal,  dapat  dilakukan  dengan bantuan  pengalihan  arah 

     masukan sebagai berikut:

          $ mail ibrahim < dead.letter

          $ 

          Jika  kita  ingin membaca pesan yang  ditujukan  kepada 

     kita,  yang  tersimpan  di  mailbox  kita,  dapat  digunakan 

     perintah berikut:

          $ mail 

          no mail

          $

          Oops, tidak ada pesan untuk kita. Jika ada pesan  untuk 

     kita, maka pesan pertama akan ditampilkan sebagai berikut:

          $ mail

          From Arief Wed Jun 11 13:30:23 1992

          Hari sabtu pukul 6.00 wib kita bertanding tennis 

          Dilanjutkan rapat kegiatan bulan depan, Oke ?

          ?

          Karakter  '?'  pada  akhir  pesan  adalah  prompt  mail 

     (beberapa  sistem UNIX menggunakan prompt mail  lain).  Jika 

     kita  mengetik karakter '?' atau '*' pada prompt mail,  maka 

     kita   akan  mendapatkan  sejumlah  pilihan  karakter   yang 

     merupakan perintah yang dapat digunakan pada pembacaan mail.

          $ mail

          From Arief Wed Jun 11 13:30:23 1992

          Hari sabtu pukul 6.00 wib kita bertanding tennis 

          Dilanjutkan rapat kegiatan bulan depan, Oke ?

          ??

          q              quit

          x              exit without changing mail

          p              print 

          s [file]       save (default mbox)

          w [file]       same without header

          -              print previous

          d              delete

          +              next (no delete)

          m user         mail to user

          ! cmd          execute cmd

          ?

          Ada  sejumlah  karakter yang belum terdaftar  di  atas. 

     Untuk  melihat  selanjutnya, tekan  ENTER,  sedangkan  untuk 

     menghentikannya tekan ^D.

          Untuk menyimpan pesan yang kita terima gunakan perintah 

     's' yang diikuti nama file penyimpan sebagai berikut:

          $ mail

          From arief Wed Jun 11 13:30:23 1992

          Hari sabtu pukul 6.00 wib kita bertanding tennis 

          Dilanjutkan rapat kegiatan bulan depan, Oke ?

          ? s dari_arief

          From desalina Fri Jan 29 10:29:23 1993

          A gang of us are going for Sunday Bruch

          Would you like to join us ?

          ?

          Proses di atas akan menyebabkan tiga hal, yaitu:

          o Jika  file  dari_arief  tidak  ada,  maka  file  baru 

            diciptakan  dan berisi pesan dari mail termasuk  pula 

            header-nya. Yang dimaksud header adalah baris pertama 

            dari isi pesan.

               $ cat dari_arief

               From arief Wed Jun 11 13:30:23 1992     (header)

               Hari sabtu pukul 6.00 wib kita bertanding tennis 

               Dilanjutkan rapat kegiatan bulan depan, Oke ?

               $

          o Jika file sudah ada, pesan akan ditambahkan di  akhir 

            file.   Pesan   tersebut  dihapus   dari   mail   dan 

            ditampilkan pesan selanjutnya.

          o Jika  tidak ada pesan, mail keluar dari  sistem  mail  

            dan kembali ke prompt UNIX '$'.

          Cara  lain  untuk  menyimpan  file  adalah  menggunakan 

     perintah 'w' sebagai berikut:

          $ mail

          From desalina Fri Jan 29 10:29:23 1993

          A gang of us are going for Sunday Bruch

          Would you like to join us ?

          ? w from_desa

          From nadiah Sat Jan 30 12:38:30 1993

          Rapat pertanggung jawaban HIMIKO UI, 6 Februari 1993

          Peserta harap hadir tepat waktu

          ?

          Berbeda   dengan  perintah  's',  perintah  'w'   tidak 

     menyimpan  header  dari pesan yang kita  terima.  Mari  kita 

     lihat isi file from_desa dari dalam sistem mail.

          $ mail

          From nadiah Sat Jan 30 12:38:30 1993

          Rapat pertanggung jawaban HIMIKO UI, 6 Februari 1993

          Peserta harap hadir tepat waktu

          ? !cat from_desa

          A gang of us are going for Sunday Bruch

          Would you like to join us ?

          !

          ?

          Dengan perintah '!' kita tidak perlu keluar sistem mail 

     untuk menjalankan perintah-perintah UNIX lainnya.

          Jika kita tidak menyebutkan nama file tempat  menyimpan 

     pesan,  maka file-file tersebut akan disimpan di dalam  file 

     mbox di dalam home directory. File terbaru akan  ditambahkan 

     diakhir file mbox.

          Terkadang kita ingin meneruskan pesan yang kita  terima 

     ke  pemakai  lain yang dianggap perlu, misalnya  pesan  yang 

     berupa  pemberitahuan.  Untuk itu  gunakanlah  perintah  'm' 

     sebagai berikut:

          $ mail

          From nadiah Sat Jan 30 12:38:30 1993

          Rapat pertanggung jawaban HIMIKO UI, 6 Februari 1993

          Peserta harap hadir tepat waktu

          ? m ian henry novrita

          ?

          Pesan tersebut dikirim ke pemakai lain, sehingga  pesan 

     tersebut  akan  memiliki  header  yang  bertingkat   sebagai 

     berikut:

          $ mail

          From nadiah Mon Feb 1 10:18:12 1993

          >From nadiah Sat Jan 30 12:38:30 1993

          Rapat pertanggung jawaban HIMIKO UI, 6 Februari 1993

          Peserta harap hadir tepat waktu

          ?

          Sedangkan  untuk  menjawab pesan  dengan  segera  dapat 

     dilakukan cara sebagai berikut:

          $ mail

          From nadiah Mon Feb 1 10:18:12 1993

          >From nadiah Sat Jan 30 12:38:30 1993

          Rapat pertanggung jawaban HIMIKO UI, 6 Februari 1993

          Peserta harap hadir tepat waktu

          ? !mail denny

          Terima kasih atas pemberitahuannya

          Saya akan datang tetapi agak terlambat

                              --Denny--

          ^D

          !

          ?

          Untuk melihat pesan berikutnya yang kita terima,  dapat 

     digunakan  perintah  '+' atau ENTER. Jika  tidak  ada  pesan 

     berikutnya,  maka  penekanan perintah '+'  akan  menyebabkan 

     kita  segera  keluar dari sistem mail. Sementara  itu  untuk 

     melihat pesan sebelumnya dapat digunakan perintah '-'.

          Selanjutnya  untuk  menghapus pesan  yang  kita  terima 

     dapat  digunakan perintah 'd' dari prompt mail.  Pesan  yang 

     tidak  dihapus  akan selalu muncul pada  setiap  pemanggilan 

     mail dilakukan. Perlu diingat bahwa proses penghapusan belum 

     'benar-benar'  dilakukan  selama kita masih aktif  di  dalam 

     sistem  mail.  Penghapusan 'benar-benar'  dilakukan  setelah 

     kita keluar dari sistem mail.

          Ada  tiga  cara untuk keluar dari  sistem  mail,  yaitu 

     dengan  mengetikkan  perintah-perintah berikut  pada  prompt 

     mail:

          ? ^D

          atau 

          ? q

          atau

          ? x

          Perintah  ^D dan 'q' akan menyebabkan kita keluar  dari 

     sistem  mail  dengan menyimpan hasil perubahan  yang   telah 

     dilakukan. Perintah 'x' menyebabkan kita keluar dari  sistem 

     tanpa  menyimpan hasil perubahan yang telah dilakukan.  Yang 

     dimaksud perubahan disini misalnya adalah penghapusan pesan. 

     Contoh, jika perintah 'x' yang dipilih maka penghapusan yang 

     dilakukan akan dibatalkan.

Dasar Unix


