Speed up your internet access using Squid's refresh patterns

Bandwidth limitation is still a problem for a lot of people who connect to the Internet. You
can improve your available bandwidth by installing Squid caching proxy server on your network
with configuration parameters that will increase your byte hit rate, giving you about 30-60%

more bandwidth.

Squid can be fine-tuned to satisfy a host of needs. The stable version has at least 249
configurable parameters. The heavily commented configuration file, usually found in
/ete/squid.conf, is more than 4,600 lines long. This can be intimidating to even experienced

administrators. All settings are to be modified in this file.

You need a big cache that will not fill up in less than a week, and preferably should take
more than a month to fill up. The actual size will be dependent on the volume of traffic on your
network. The bigger the size of your storage, the greater the probability that the object someone

is requesting for will already be in your cache.

In addition to the memory required for your operating system and Squid to run, you will
need memory of about 1% of your cache size to keep the database of your cache in memory. That
is, for a cache of 100GB disk space, you will need about 1GB RAM, in addition to about 100MB
for the OS and Squid.

The default maximum size of objects that may be cached by Squid is 4MB. Nowadays,
this is too low for the media-rich Internet. If your clients download a lot of video and software
packages, you can increase this to a figure more representative of the maximum size of files that

your clients normally download -- say 100MB.

Refresh patterns determine what is saved and served from the cache. Ideally, you would
want your squid to follow the directions of the Web servers serving the content to determine what
is cacheable and for how long. These directions are set as HTTP headers that are processed and
understood by Squid. Unfortunately, the directions given by most servers are the Web servers'

defaults, and do not produce significant bandwidth savings.

http://www.squid-cache.org/

Refresh patterns are of the format:

refresh_pattern [-i] regex min percent max [options]

where min and max are time values in minutes and percent is a percentage figure. The options

are.

* override-expire -- ignores the expire header from the Web server.

» override-lastmod -- ignores the last modified date header from the Web server.

* reload-into-ims -- a reload request from a client is converted into an If-Modified-Since
request.

* ignore-reload -- a client's no-cache or "reload from origin server" directive is ignored. The
request can therefore be satisfied from the cache if available.

* ignore-no-cache -- a no-cache directive from the Web server which makes an object non-
cacheable is ignored.

* ignore-no-store -- a no-store directive from the Web server which makes an object non-
cacheable is ignored.

* ignore-private -- a private directive from the Web server which makes an object non-
cacheable is ignored.

* ignore-auth -- objects requiring authorisation are non-cacheable. This option overrides this
limitation.

 refresh-ims -- a refresh request from a client is converted into an If-Modified-Since

request.

Consult your configuration file to see which of these options are available in your version of

Squid.

Refresh patterns are effective if there is no expire header from the origin server, or your refresh

pattern has an override-expire option. Example:

refresh_pattern -i \.gif$ 1440 20% 10080.

This says:

» Ifthere is no expire header for all objects whose names end in .gif or .GIF (that is, image
files) then:
 if the age (that is how long the object has been on your cache server) is less than 1,440

minutes, then consider it fresh and serve it and stop

» else if the age is greater than 10,080 minutes, consider it stale and go to the origin server
for a fresh copy and stop

* else if the age is in between the min and max values, use the Im-factor to determine
freshness. Im-factor is the ratio of the age on your cache server to the period since creation
or modification of the object on the origin server as a percentage. So if the object was
created 10,000 minutes ago on the origin server and it has been on my cache server for
1,800 minutes (that is the age) the Im-factor is 1,800/10,000 = 18%.

* Ifthe Im factor is less than the percent in our refresh pattern (20%) then the object is
considered fresh; serve it and stop

* else the object is stale, go for a fresh copy from the origin server.

For objects that scarcely change under the same file name, such as video, images, sound,
executables, and archives, you can modify the refresh pattern to consider them fresh on your
Squid for a longer time, increasing the probability of having hits. For example, you could modify

our refresh pattern above to:

refresh_pattern ~ftp: 1440 20% 10080

refresh_pattern ~gopher: 1440 0% 1440

refresh_pattern -i \.(gif|png|jpg|jpeg|ico)$ 10080 90% 43200 override-expire
ignore-no-cache ignore-no-store ignore-private

refresh_pattern -i \.(iso|avi|wav|mp3|mp4|mpeg|swf|flv|x-flv)$ 43200 90%
432000 override-expire ignore-no-cache ignore-no-store ignore-private
refresh_pattern -i \.(deb|rpm|exe|zip|tar|tgz|ram|rar|bin|ppt|doc|tiff)$
10080 90% 43200 override-expire ignore-no-cache ignore-no-store ignore-private
refresh_pattern -i \.index.(html|htm)$ 0 40% 10080

refresh_pattern -i \.(html|htm|css|js)$ 1440 40% 40320

refresh_pattern . 0 40% 40320

Sometimes, for no good reason, at least from our perspective, origin servers, such as

youtube.com, do everything to make it difficult or impossible for you to cache content. The

options above should help you to overcome some of these limitations.

Refresh patterns are matched against all requests in order from the top until there is a matching
rule. The last rule is a catch-all and will match any request that is not satisfied by any of the rules
above it. There are normally separate catch-all default rules for other protocols like FTP and

gopher at the very top of the list so as to exempt those protocols from the patterns below them.

By default, Squid will not cache dynamic content. Dynamic content is determined by matching
against either "cgi-bin" or "?". This feature used to be activated via the "hierarchy_stoplist" and
"cache deny" settings in older versions of Squid. In recent versions, starting with 3.1, this feature
is activated via a refresh pattern such as refresh pattern (/cgi-bin/|\?) 0 0% 0.
This enables you to specify sites that serve dynamic content that could be made cacheable in
bypass rules. For example, you could set up a refresh pattern such as:

refresh_pattern -i movies.com/.* 10080 90% 43200
refresh_pattern (/cgi-bin/|\?) 0 0% 0

Then, even if content from movies.com is served with "?" in their URL, the content will still be

cached if all other conditions are met.

For the older versions of Squid, you will have to define an access control list (ACL) for the
content providers you wish to make exceptions for, and use cache accept to exempt it before
the cache deny rule. The following example is from the Squid wiki:

Let the client's favourite video site through

acl youtube dstdomain .youtube.com

cache allow youtube

Now stop other dynamic stuff being cached

hierarchy_stoplist cgi-bin ?

acl QUERY urlpath_regex cgi-bin \?

cache deny QUERY

Squid makes a lot of DNS requests, one dns request for each http request. Install a caching DNS
server on your server and have Squid use it so as to cut down on your DNS requests. This how-to

may be helpful.

Sites like Microsoft's windowsupdate.com, which virtually all Windows PCs update their OS

from, are among the most bandwidth-intensive sites on some networks. Unfortunately, they are

http://www.httpcompression.net/howtos/pdnsd.html
http://wiki.squid-cache.org/ConfigExamples/DynamicContent

not cacheable because they offer partial responses (http return code 206), which Squid presently
does not cache. Where you have control over the client machines, you can install Microsoft's
Update Server to handle caching for windowsupdate. If you cannot use the Update Server, you
can use Squid's delay pools -- a bandwidth management technique -- to limit the portion of
bandwidth that windowsupdate consumes during your peak periods. The clients will then have to

be online during off-peak periods to complete their updates.

Below, we configure one global delay pool at 64Kbps (8KBps). Traffic for which the ACL of
destination domain is windowsupdate.com during the peak period of 10:00-16:00 will be limited
to 64Kbps.

acl winupdate dstdomain .windowsupdate.com

acl peakperiod time 10:00-16:00

delay_pools 1

delay class 1 1

64 Kbit/s

delay_parameters 1 8000/8000
delay access 1 allow winupdate peakperiod

After making changes like the ones above, my Squid's byte hit rate increased from about 8% to
between 26-37%. If you are doing 33%, it means a third of all traffic is coming from your cache,
and not from slower links across the Internet. For monitoring and log analysis to determine the

performance of your Squid, you can use squid3-client and calamaris.

Solomon Asare is the developer of DelXy, an HTTP compression service

http://www.httpcompression.net/technical.html
http://cord.de/tools/squid/calamaris/

